Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-60^0=120^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=60^0\)
\(\Leftrightarrow\widehat{BIC}=120^0\)
Kẻ IG là phân giác của góc BIC
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ
=>góc BIC=120 độ
=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ
Xét ΔIEB và ΔIGB có
góc EIB=góc GIB
IB chung
góc IBE=góc IBG
Do đó: ΔIEB=ΔIGB
Suy ra: IE=IG(1)
Xét ΔIGC và ΔIDC có
góc GIC=góc DIC
IC chung
góc GIC=góc DIC
Do đó: ΔIGC=ΔIDC
Suy ra: IG=ID
=>ID=IE
Do \(\widehat{BAC}=60^o\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\).
Suy ra \(\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^o\).
Suy ra \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=120^o\).
Vì vậy \(\widehat{EIB}=\widehat{DIC}=180^o-120^o=60^o\).
Kẻ tia phân giác IF của góc BIC (F thuộc BC). Suy ra \(\widehat{BIF}=\widehat{FIC}=120^o:2=60^o\).
Xét tam giác EIB và tam giác FIB có:
BI chung.
\(\widehat{EBI}=\widehat{IBF}\)
\(\widehat{EIB}=\widehat{FIB}\)
Suy ra \(\Delta EIB=\Delta FIB\left(g.c.g\right)\).
Vì vậy IE = IF.
Chứng minh tương tự ta có ID = IF.
vì vậy ID = IE.
Trong ΔABC, ta có:
∠A +∠B +∠C = 180o (tổng ba góc trong tam giác)
⇒∠B +∠C = 180 - ∠A = 180 - 60 = 120o
+) Vì BD là tia phân giác của ABC nên: ∠(B1 ) = ∠(B2) = 1/2 ∠B
Vì CE là tia phân giác của góc ACB nên: ∠(C1 ) = ∠(C2) = 1/2 ∠ C
Do đó:
Trong ΔBIC, ta có:
∠(BIC) = 180o(∠(B1 ) + ∠(C1) = 180o - 60o = 120o
Kẻ tia phân giác ∠(BIC) cắt cạnh BC tại K
Suy ra: ∠(I2 ) = ∠(I3 ) = 1/2 ∠(BIC) = 60o
Ta có: ∠(I1 ) + ∠(BIC) = 180o (hai góc kề bù)
⇒ ∠(I1 ) = 180o-∠(BIC) = 180o - 120o = 60o
∠(I4 ) = ∠(I1) = 60o(vì hai góc đối đỉnh)
Xét ΔBIE và ΔBIK, ta có
∠(B2) = ∠(B1) (vì BD là tia phân giác của góc ABC)
BI cạnhchung
∠(I1) = ∠(I2) = 60o
Suy ra: ΔBIE = ΔBIK(g.c.g)
IK = IE (hai cạnh tương ứng) (1)
Xét ΔCIK và ΔCID, ta có
∠(C1) = ∠(C2) ( vì CE là tia phân giác của góc ACB).
CI cạnh chung
∠(I3) = ∠(I4) = 60o
Suy ra: ΔCIK = ΔCID(g.c.g)
IK = ID (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: IE = ID
Kẻ phân giác IH của \(\widehat{BIC}\)
Ta có \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=120^0\)
Mà BI,CI là phân giác \(\widehat{ABC};\widehat{ACB}\Rightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)
Xét tam giác IBC: \(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)
\(\Rightarrow\widehat{BIH}=\widehat{CIH}=\dfrac{1}{2}\widehat{BIC}=60^0\)
Lại có \(\widehat{BIE}=\widehat{DIC}=180^0-\widehat{BIC}=60^0\) (kề bù)
Do đó \(\widehat{BIH}=\widehat{CIH}=\widehat{BIE}=\widehat{DIC}\)
\(\left\{{}\begin{matrix}\widehat{BIH}=\widehat{BIE}\\BI\text{ chung}\\\widehat{IBE}=\widehat{IBH}\end{matrix}\right.\Rightarrow\Delta BEI=\Delta BHI\left(g.c.g\right)\\ \Rightarrow EI=HI\left(1\right)\\ \left\{{}\begin{matrix}\widehat{CIH}=\widehat{DIC}\\CI\text{ chung}\\\widehat{HIC}=\widehat{DIC}\end{matrix}\right.\Rightarrow\Delta CDI=\Delta CHI\left(g.c.g\right)\\ \Rightarrow DI=HI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IE=ID\)
Kẻ IG là phân giác của góc BIC
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ
=>góc BIC=120 độ
=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ
Xét ΔIEB và ΔIGB có
góc EIB=góc GIB
IB chung
góc IBE=góc IBG
Do đó: ΔIEB=ΔIGB
Suy ra: IE=IG(1)
Xét ΔIGC và ΔIDC có
góc GIC=góc DIC
IC chung
góc GIC=góc DIC
Do đó: ΔIGC=ΔIDC
Suy ra: IG=ID
=>ID=IE
Kẻ IG là phân giác của góc BIC
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ
=>góc BIC=120 độ
=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ
Xét ΔIEB và ΔIGB có
góc EIB=góc GIB
IB chung
góc IBE=góc IBG
Do đó: ΔIEB=ΔIGB
Suy ra: IE=IG(1)
Xét ΔIGC và ΔIDC có
góc GIC=góc DIC
IC chung
góc GIC=góc DIC
Do đó: ΔIGC=ΔIDC
Suy ra: IG=ID
=>ID=IE
=)))))))))))))))))))))
Vẽ phân giác\(\widehat{BIC}\) cắt BC tại F(1).Ta có :\(\widehat{B_2}=\frac{\widehat{ABC}}{2};\widehat{C_2}=\frac{\widehat{ACB}}{2}\)(BD,CE lần lượt là phân giác của\(\widehat{ABC},\widehat{ACB}\): gt)
\(\Rightarrow\widehat{BIC}=180^0-\left(\widehat{B_2}+\widehat{C_2}\right)=180^0-\frac{\widehat{ABC}+\widehat{ACB}}{2}=180^0-\frac{180^0-\widehat{A}}{2}=120^0\)
\(\Rightarrow\widehat{I_1}=\widehat{I_4}=180^0-\widehat{BIC}=60^0\)(vì kề bù) ;\(\widehat{I_2}=\widehat{I_3}=\frac{\widehat{BIC}}{2}=60^0\)(do (1))
\(\Rightarrow\Delta IBE=\Delta IBF\left(g.c.g\right);\Delta ICF=\Delta ICD\left(g.c.g\right)\)=> IE = IF (2 cạnh tương ứng) ; IF = ID (2 cạnh tương ứng)
=> IE = ID
Bạn ko hiểu chỗ nào thì hỏi mình nhé!