Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)
1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)
\(\Leftrightarrow48,68-AC^2=13,57\)
hay \(AC=5,93\left(cm\right)\)
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5
nên \(\widehat{B}\simeq53^0\)
=>góc C=90-53=37 độ
AH=AB*AC/BC=12*16/20=192/20=9,6cm
d: Xét ΔABC vuông tại A có
tan B=AC/AB=4/3
sin B=AC/BC=4/5
mà 4/3>4/5
nên tan B>sin B
1.
Kẻ đường cao CH
Xét tam giác vuông HCB,ta có:
góc B + góc C1 =900
600 + góc C1 =900
=> góc C1 = 300 => góc C2 =100
Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:
HB= BC x cot góc B = 9 x cot 600 = 3√3 (cm)
=>HC=BC2 - HB2 =92 - (3√3)2 = 3√6 (cm) (Đinh lí Py-ta-go)
AH= HC x tan góc C2 = 3√6 x tan 100 =1,3 (cm)
Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)
AC = AH : sin góc C2 = 7,49 (cm)
Vậy AB = 6,49 cm ; AC = 7,49 cm
2.
Kẻ đường cao AH.
Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:
BH = AB x cos góc B = 3,2 x cos 700 = 1,09 (cm)
AH= BH x tan góc B =1,09 x tan 700 = 2,99 (cm)
Ta có : BC - BH = HC
=> HC = 6,2 - 2,99 = 3,21 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:
AC2 = AH2 +HC2 = (2,99)2 +(3,21)2 =>AC= 4,39 (cm)
Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha