K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

thathu mà

9 tháng 8 2017

Cho tam giác ABC có góc A = 120 độ . các đường phân giác AD,BE,CF 

a, chứng minh rằng DE là phân giác góc ADC

b, EDF =90 độ

bài làm

hình ảnh tượng trưng cho em dễ tưởng tượng thôi đấy nhé [​IMG]

[​IMG]

_________



a)
chị gợi ý nhé :

vì AD là tia phân giác của góc A nên

BAD^=CAD^=60oBAD^=CAD^=60o

=> góc ngoài của đỉnh A = 180 - 120 = 60

__

theo t/c của 3 đường phân giác thì 3 đường đều giao tại 1 điểm

mà em có BE là tia P.G trong

AE là tia phân giác ngoài đỉnh A

2 tia này đã giao với nhau vậy => DE giao với 3 tia này => đpcm

là gợi ý thôi em nhé, em đừng chép lời vào kẻo bị đánh giá về ngôn ngữ toán học đấy

b)
cm DF là tia phân giác ngoài của tam giác ADC ,
=> góc EDF =90 độ

___

từ phần a => BED^=EDC^−EBD^BED^=EDC^−EBD^ 

= ADC^−ABC^2=BAD2ADC^−ABC^2=BAD2 
__________________

26 tháng 3 2020

Bạn tự vẽ hình nhé!

a)Xét tam giác BAD có góc BAD=60o=1/2.BAC=1/2.120o

suy ra đc AC là phân giác góc ngoài của tam giác BAD( góc ngoài của BAD tại đỉnh A=120o)

mà AE,BE.DE đồng quy tại một điểm

BE là phân giác trong của tam giác ABD

suy ra DE là phân giác góc ngoài

b) CM tương tự câu a, ta sẽ có DF cũng là phân giác góc ngoài của tam giác ACE

FDA+ADE=1/2.BDA+1/2.CDA=1/2(BDA+CDA)=1/2.180o=90o

còn câu cuối mk chưa nghĩ ra, khi nào có gửi bạn sau nha!