Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh bổ đề đường trung bình:
Đề bài:Cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB,AC.Chứng minh rằng:\(MN//BC;MN=\frac{BC}{2}\)
Lấy E đối xứng với M qua N.
Ta có:
\(\Delta AMN=\Delta NCE\left(c.g.c\right)\Rightarrow AM=CE\Rightarrow MB=CE;AM//CE\)
\(\Delta BEM=\Delta BEC\left(c.g.c\right)\Rightarrow ME=BC;ME//BC\)
=> đpcm.
Gọi F là điểm đối xứng với C qua AE.CF cắt AE tại I.
Xét tam giác vuông AIC có \(\widehat{IAC}=30^0\Rightarrow IC=\frac{1}{2}AC\Rightarrow FC=AC\Rightarrow\Delta FAC\) đều ( vận dụng tính chất cạnh đối diện với góc \(30^0\) thì bằng một nửa cạnh huyền;tam giác vuông có 1 góc bằng \(60^0\) thì nó là tam giác đều)
Áp dụng tính chất đường trung bình vào \(\Delta CBF\),ta có:
\(\Rightarrow IE//FB\Rightarrow\widehat{BFC}=90^0\)
Do \(\widehat{CFA}=60^0\Rightarrow\widehat{BFA}=90^0+60^0=150^0\)
Lại có:\(\widehat{FAB}=\widehat{FAC}-\widehat{EAC}-\widehat{BAE}=60^0-30^0-15^0=15^0\)
Xét \(\Delta BFA\) có:\(\widehat{BFA}=150^0;\widehat{FAB}=15^0\Rightarrow\widehat{FBA}=15^0\Rightarrow\Delta BFA\) cân tại F.
\(\Rightarrow FB=FA\) mà \(FA=FC\Rightarrow FB=FC\Rightarrow\Delta FBC\) vuông cân tại F.
\(\Rightarrow\widehat{FCB}=45^0\Rightarrow\widehat{ACB}=\widehat{FCB}+\widehat{FCA}=45^0+60^0=105^0\)
Vậy \(\widehat{ACB}=105^0\)
a, Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
b,M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
\(\widehat{AEC}=\widehat{BAE}+\widehat{B}\\ =\dfrac{1}{2}\widehat{BAC}+\widehat{B}=\dfrac{1}{2}\left(\widehat{BAC}+\widehat{B}+\widehat{C}\right)+\dfrac{1}{2}\widehat{B}-\dfrac{1}{2}\widehat{C}\\ =\dfrac{1}{2}\cdot180^0+\dfrac{1}{2}\left(\widehat{B}-\widehat{C}\right)=90^0+\dfrac{1}{2}\cdot30^0=105^0\)