K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

a: Xét ΔCBA có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=50

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)

=>\(BD=\dfrac{150}{7}\left(cm\right);CD=\dfrac{200}{7}\left(cm\right)\)

Xét ΔABC có DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{DE}{30}=\dfrac{200}{7}:50=\dfrac{4}{7}\)

=>\(DE=\dfrac{120}{7}\left(cm\right)\)

b: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

=>Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot30\cdot40=15\cdot40=600\left(cm^2\right)\)

28 tháng 11 2023

bạn tính cho mik diện tích tam giác adb,ade và dce vs

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: AC=8cm; AD=3cm; CD=5cm

b) Xét ΔDHC vuông tại H và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔDHC\(\sim\)ΔABC(g-g)

20 tháng 2 2020

Lời giải:
Sử dụng tính chất đường phân giác:

ABAC=BDDC=1520=34(1)ABAC=BDDC=1520=34(1)

Áp dụng định lý Pitago cho tam giác vuông ABCABC:

AB2+AC2=BC2=(BD+DC)2=352=1225(2)AB2+AC2=BC2=(BD+DC)2=352=1225(2)

Từ (1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49(1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49

⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28 (cm)

17 tháng 10 2020

tự mà lm

a: \(BC=\sqrt{4.2^2+5.6^2}=7\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot4.2\cdot5.6=11.76\left(cm^2\right)\)

b: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=7/7=1

=>DB=3cm; DC=4cm

c: Xét ΔCAB có ED//AB

nên ED/AB=CD/CB

=>ED/4,2=4/7

=>ED=2,4cm

NM
27 tháng 1 2021

A B C D E

a. ta có \(\hept{\begin{cases}\frac{DB}{DC}=\frac{AB}{AC}=\frac{10}{25}=\frac{2}{5}\\BD+DC=BC=30\end{cases}\Rightarrow\hept{\begin{cases}DB=\frac{60}{7}\\DC=\frac{150}{7}\end{cases}}}\)

mà \(\frac{DE}{AB}=\frac{CD}{CB}=\frac{5}{7}\Rightarrow DE=\frac{50}{7}cm\)

b.ta có \(\frac{S_{ABD}}{S_{ABC}}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{ABD}=\frac{120.2}{7}=\frac{240}{7}cm^2\Rightarrow S_{ACD}=S_{ABC}-S_{ABD}=\frac{600}{7}\)

mà 

\(\frac{S_{AED}}{S_{ADC}}=\frac{AE}{AC}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{AED}=\frac{600}{7}\frac{.2}{7}=\frac{1200}{49}cm^2\Rightarrow S_{CDE}=S_{ACD}-S_{AED}=\frac{3000}{49}\)