K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(\Delta ABC\)có :

N là trung điểm AB

P là trung điểm AC

=> NP là đường trung bình 

=> NP//BC

Xét \(\Delta ABC\)ta có :

M là trung điểm BC

N là trung điểm AB

=> NM là đường trung bình 

=> NM//AC, NM =\(\frac{AC}{2}\)

Xét \(\Delta AHC\)có :

HP là trung tuyến 

=> HP = AP = PC = \(\frac{AC}{2}\)

=> NM = HP( \(=\frac{AC}{2}\))

Xét tứ giác NPMH có :

NP//HM ( NP//BC ; N , M \(\in\)BC)

NM = PH 

=> NPMH là hình thang cân 

11 tháng 8 2018

qưertyui9opasdfghjkl

11 tháng 8 2018

a,Xét tam giác AHB trung tại H có  HM là đường  trung tuyến nên HM =2AB (1)

Trong tam giác ABC có N là trug điểm của AC, O và K là trug điểm của BC nên NK là đường trng bình của tam giác ABC => NK =2AB

Từ (1) và (2), ta có HM=NK

b, Trong tam giác AHC vuông tại H có HN là đường trung tuyến nên HN=AC (3)

Tam giác ABC có M là trung điểm của AB và K là trung điển của BC nên MK là đường trug bình của tam giác ABC => MK=AC (4)

Từ (3) VÀ (4) ,ta có HN = 2MK

Tam giác ABC có M là trung điểm của AB và N là trung điểm của AC nên MN là đường trung bình của tam giác ABC =>MN//BC hay MN=KH =>MNKH là hình thang .Từ (a) và (b), MNKH là hình thang cân.

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

Bài 1: 

a: Ta có: ΔABH vuông tại H

mà HM là đường trung tuyến ứng với cạnh huyền AB

nên \(HM=\dfrac{AB}{2}=AM=BM\)

Ta có: ΔACH vuông tại H

mà HN là đường trung tuyến ứng với cạnh huyền AC

nên \(HN=\dfrac{AC}{2}=AN=NC\left(1\right)\)

Ta có: MA=MH

nên M nằm trên đường trung trực của AH(1)

Ta có: NA=NH

nên N nằm trên đường trung trực của AH(2)

từ (1) và (2) suy ra MN là đường trung trực của AH

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

hay MN//HP

Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình của ΔABC

Suy ra: \(MP=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//PH

nên MNPH là hình thang

mà MP=HN

nên MNPH là hình thang cân