K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

Ta có: \(AH^2=HB.HC\Rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

Xét tam giác AHB và tam giác CHA có:

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{HCA}\)

Mà \(\widehat{HCA}+\widehat{HAC}=90^0\)(ΔHAC vuông tại H)

\(\Rightarrow\widehat{BAH}+\widehat{HAC}=90^0\)

\(\Rightarrow\widehat{BAC}=90^0\left(đpcm\right)\)

10 tháng 7 2019

AB.AC = BC.AH ( hệ thức trong tam giác vuông )
<=> AB²AC² = BC²AH²
<=> AH² = AB²AC² / BC²
<=> AH² = AB²AC² / AB²+AC² ( Tính chất Pytago )
<=> 1/AH² = AB²+AC² / AB²AC²
<=> 1/AH² = 1/AB² + 1/AC²

=> đpcm

Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH cắt EF tại trung điểm của mỗi đường và AH=EF

=>OE=OF=AH/2

\(HB\cdot HC=AH^2\)

\(4\cdot OE\cdot OF=AH\cdot FE=AH^2\)

Do đó: \(HB\cdot HC=4\cdot OE\cdot OF\)

15 tháng 3 2019

Câu hỏi của nguyen thi bao tien - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo cách làm tương tự nhé!

22 tháng 10 2015

Kéo dài AD cắt đường tròn ngoại tiếp ABC tại H'.

Đặt x=HD; 
Vì góc BAC nhọn và do H' đối xứng với H qua BC nên ta có: DH'=HD=x; CH'=CH=30
Áp dụng Pitago cho tg vuông ACH':

AC^2+(CH')^2=(AH')^2 -->AC^2+900=(14+2x)^2 (*)
Mặt khác CD^2= AD.DH' --> CD^2=(14+x).x (**)
trừ 2 vế (*) và (**):

AC^2+900-CD^2 =(14+2x)^2 -(14+x).x (***)
Mà AC^2-CD^2 =AD^2 =(14+x)^2;

Thế vào (***) ta được ph.tr:

(14+x)^2+900 =(14+2x)^2-(14+x)x ---> x^2+7x-450=0
phtr trên có nghiệm x= -25 (loại) và x= 18 (nhận)
AD= 14+x =14+18= 32 cm