K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

A B C D D' B' C' d

a) Ta có:   d // BC (gt)

 \(\Rightarrow\)B'C' // BC, theo hệ quả của định lí Ta-lét ta có:

     \(\frac{AB'}{AB}=\frac{B'C'}{BC}\)(Trong \(\Delta AB'C'\)và \(\Delta ABC\)) (1)

Và \(\frac{AB'}{AB}=\frac{AD'}{AD}\)(Trong \(\Delta AB'D'\)và \(\Delta ABD\)) (2)

Từ (1), (2) \(\Rightarrow\)\(\frac{B'C'}{BC}=\frac{AD'}{AD}\left(3\right)\)

b) Ta có: AD' = \(\frac{1}{3}\)AD (gt) (4) \(\Leftrightarrow\frac{AD'}{AD}=\frac{1}{3}\left(5\right)\)

Từ (3), (5) \(\Rightarrow\frac{B'C'}{BC}=\frac{1}{3}\Leftrightarrow B'C'=\frac{1}{3}BC\)\(\left(6\right)\)

Tích của cạnh đáy BC và đuuờng cao AD là:

\(S_{ABC}=\frac{1}{2}AD.BC\)

\(\Leftrightarrow\)73,5 \(=\frac{1}{2}AD.BC\)

\(\Leftrightarrow\)\(AD.BC=\)73,5 :\(\frac{1}{2}\)

\(\Leftrightarrow\)\(AD.BC=\)147     \(\left(7\right)\)

Diện tích tam giác AB'C' là:

\(S_{AB'C'}=\frac{1}{2}AD'.B'C'\)

Từ (4), (6) \(\Rightarrow S_{AB'C'}\)=\(\frac{1}{2}.(\frac{1}{3}.AD.\frac{1}{3}BC)\)

                \(\Leftrightarrow S_{AB'C'}=\frac{1}{2}.\frac{1}{3}.\frac{1}{3}.AD.BC\)

Từ (7)  \(\Rightarrow S_{AB'C'}\)\(=\frac{1}{2}.\frac{1}{3}.\frac{1}{3}.147\)

                               \(=\frac{49}{6}\)

Vậy  \(S_{AB'C'}=\frac{49}{6}cm^2\)

26 tháng 12 2017

a) Theo hệ quả định lý Ta let ta có:

ΔABC có B’C’ // BC (B’ ∈ AB; C’ ∈ AC) ⇒ Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔAHC có H’C’ // HC (H’ ∈ AH, C’ ∈ AC) ⇒ Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

10 tháng 3 2021

13 AH là sao ạ ?

10 tháng 3 2021

Mình cx ko bik nx tại vì này là thầy mình chụp bài của bên trường gửi qua lớp mình á, này là thầy mình gửi qua áundefined

22 tháng 4 2017

a) Chứng minh AH′AH = B′C′BC

Vì B'C' // với BC => B′C′BC = AB′AB (1)

Trong ∆ABH có BH' // BH => AH′AH = AB′BC (2)

Từ 1 và 2 => B′C′BC = AH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 13 AH

B′C′BC = AH′AH = 13 => B'C' = 13 BC

=> SAB’C’= 12 AH'.B'C' = 12.13AH.13

21 tháng 2 2018

a) Chứng minh AH′AHAH′AH = B′C′BCB′C′BC

Vì B'C' // với BC => B′C′BCB′C′BC = AB′ABAB′AB (1)

Trong ∆ABH có BH' // BH => AH′AHAH′AH = AB′BCAB′BC (2)

Từ 1 và 2 => B′C′BCB′C′BC = AH′AHAH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 1313 AH

B′C′BCB′C′BC = AH′AHAH′AH = 1313 => B'C' = 1313 BC

=> SAB’C’= 1212 AH'.B'C' = 1212.1313AH.1313BC

=>SAB’C’= (1212AH.BC)1919

mà SABC= 1212AH.BC = 67,5 cm2

Vậy SAB’C’= 1919.67,5= 7,5 cm2


5 tháng 8 2019

KO BIET

27 tháng 4 2021

Ta có: AEH=90⁰.

=>HAE+AHE=90⁰.(1)

Ta có: ∆BHD vuông tại D.

=>DBH+BHD=90⁰.(2)

Từ (1) và (2) suy ra: HAE+AHE=DBH+BHD=90⁰.

Mà: AHE=DBH (2 góc đối đỉnh).

=> HAE=DBH.

=>HAE=DBE.

=>∆HEA~CBE(g.g).

=>AE/BE=HE/CE.

=>BE.HE=AE.CE.=>4BE.HE=4AE.CE.=>4BE.HE=AC².

=> (AE+CE)²=4AE.CE.

=>(AE-CE)²=0.

=>AE=CE 

=> E là trung điểm của AC 

=> BE là đường trung tuyến của ∆ABC 

Mà: BE là đường cao của ∆ABC.

=> ∆ABC cân tại B.