Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Với mọi số thực ta luôn có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:
\(a+b>c\Rightarrow ac+bc>c^2\)
\(a+c>b\Rightarrow ab+bc>b^2\)
\(b+c>a\Rightarrow ab+ac>a^2\)
Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
b/
Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương
Ta có:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)
Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
Nhân vế với vế:
\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
Hình như đề bài có vấn đề : thừa đk ab + bc + ac = abc
ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\)
Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)
\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)
A 2 y -2 -2 4 B C x
Vì G là trọng tâm tam giác ABC, nên ta có :
\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=1\\y_A+1=3\end{cases}\)
\(\Leftrightarrow A\left(0;2\right)\)
Giả sử \(B\left(x_1;y_1\right);C\left(x_2;y_2\right)\)
Vì M là trung điểm của BC, nên ta có :
\(\begin{cases}x_1+x_2=2\\y_1+y_2=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x_2=2-x_1\\y_2=-2-y_1\end{cases}\)
Vậy \(C\left(2-x_1;-2-y_1\right)\)
Ta có \(\overrightarrow{BA}=\left(-x_1;2-y_1\right);\overrightarrow{CA}=\left(x_1-2;y_1+4\right)\)
Vì \(\widehat{BAC}=90^0\) nên \(\overrightarrow{BA}.\overrightarrow{CA}=0\)
\(\Leftrightarrow-x_1\left(x_1-2\right)+9y_1+4\left(2-y_1\right)=0\)
\(\Leftrightarrow-x^2_1-y^2_1+2x_1-2y_1+8=0\) (1)
Do AB = AC nên \(AB^2=AC^2\)
\(x^2_1+\left(y_1-2\right)^2=2\left(2-x_1\right)^2+\left(4-y_1\right)^2\)
\(\Leftrightarrow-4y_1+4=-4x_1+4+16+8y_1\)
\(\Leftrightarrow x_1=3y_1+4\) (2)
Thay (2) vào (1) ta có :
\(y^2_1+y_1=0\Leftrightarrow\begin{cases}y_1=0\\y_1=-2\end{cases}\)
Từ đó ta có :
\(B\left(4;0\right);C\left(-2;-2\right)\) hoặc \(B\left(-2;-2\right);C\left(4;0\right)\)
Tóm lại ta có :
\(A\left(0;2\right);B\left(4;0\right);C\left(2;-2\right)\) là 3 đỉnh của tam giác cần tìm
(Tam giác kia vẫn là tam giác trên chỉ đổi B và C với nhau)
Vì G là trọng tâm của tam giác ABC nên ta có :
\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=-1\\y_A+1=3\end{cases}\)
\(\Leftrightarrow A\left(0;2\right)\)
Ta thấy MA có hệ số góc
\(k=\frac{2-\left(-1\right)}{0-1}=-3\)
Vì \(BC\perp MA\) nên đường thẳng nối BC có hệ số góc là \(\frac{1}{3}\), do đó phương trình của nó là :
\(y=\frac{1}{3}\left(x-1\right)-1\Leftrightarrow x-3y-4=0\)
Mặt khác do :
\(MB=MC=MA=\sqrt{1^2+3^2}=\sqrt{10}\)
Vậy tọa độ của B, C thỏa mãn phương trình đường tròn tâm M, bán kính =\(\sqrt{10}\)
\(\left(x-1\right)^2+\left(y+1\right)^2=10\)
Vậy tọa độ của B, C là nghiệm của hệ phương trình :
\(\begin{cases}x-3y-4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)
Giải hệ phương trình ta có các nghiệm (4;0) và (-2;2)
Vậy A(0;2);B(4;0);C(-2;-2) là 3 đỉnh của tam giác cần tìm
A B C M E N F P D
Gọi AD là phân giác trong của \(\Delta\)ABC. Kéo dài DM cắt BE và CA lần lượt tại N và F, AN cắt BC tại P.
Dễ thấy \(\Delta\)ADB cân tại D có trung tuyến DM, suy ra DM là trung trực của AB
Do vậy ^DAN = ^DBN = 90o suy ra AP vuông góc AD hay AP là phân giác ngoài của \(\Delta\)ABC
Từ đó \(\left(BCPD\right)=-1\). Áp dụng phép chiếu xuyên tâm N: \(\left(BCPD\right)\rightarrow\left(ECFA\right)\)
Khi đó (ECFA) là hàng điều hòa. Mà ^AMF = 90o nên MA chính là phân giác của ^CME (đpcm).
a) ta có
\(3\left(a+b+c\right)=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\)
\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)
Áp dụng BĐT Cauchy ta có
\(a^3+ab^2\ge2a^2b\) ; \(b^3+bc^2\ge2b^2c\) ; \(c^3+ca^2\ge2c^2a\)
\(\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\ge3\left(a^2b+b^2c+c^2a\right)\)\(\Rightarrow3\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a+b+c\ge a^2b+b^2c+c^2a\) (1)
Áp dụng BĐT C.B.S ta có
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\)
\(\Rightarrow a+b+c\le3\) (2)
từ (1) và (2) ta được đpcm
b) Áp dụng BĐT Cauchy ta có :
\(ab\le\dfrac{a^2+b^2}{2}=\dfrac{3-c^2}{2}\) tương tự
\(bc\le\dfrac{3-a^2}{2}\) ; \(ac\le\dfrac{3-b^2}{2}\)
BĐT cần chứng minh trở thành :
\(\dfrac{3-a^2}{2\left(3+a^2\right)}+\dfrac{3-b^2}{2\left(3+b^2\right)}+\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{3}{4}\)
Ta chứng minh BĐT phụ sau
\(\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{c^2}{4}\)\(\Leftrightarrow12-4c^2\le2c^2\left(3+c^2\right)\Leftrightarrow c^4+5c^2+6\ge0\)
\(\Leftrightarrow\left(c^2+2\right)\left(c^2+3\right)\ge0\) (luôn đúng)
tương tự : \(\dfrac{3-a^2}{2\left(3+c^2\right)}\le\dfrac{a^2}{4}\) ; \(\dfrac{3-b^2}{2\left(3+b^2\right)}\le\dfrac{b^2}{4}\)
Cộng Ba vế BĐT trên lại ta có:
\(\dfrac{3-a^2}{2\left(3+a^2\right)}+\dfrac{3-b^2}{2\left(3+b^2\right)}+\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{a^2+b^2+c^2}{4}=\dfrac{3}{4}\)
Vậy ta có đpcm
Ta có: \(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{5}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2}\ge\sqrt{\dfrac{5}{4}}\left(a+b\right)\)
Cmtt ta có: \(\sqrt{2b^2+bc+2c^2}\ge\sqrt{\dfrac{5}{4}}\left(b+c\right)\)
\(\sqrt{2c^2+ca+2a^2}\ge\sqrt{\dfrac{5}{4}}\left(c+a\right)\)
\(\Rightarrow P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra <=> a = b = c = \(\dfrac{1}{9}\)
\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Giả thiết tương đương:
\(a^4+b^4+c^4+2b^2c^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow a^4+\left(b^2+c^2\right)^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2=2b^2c^2\)
\(\Leftrightarrow b^2+c^2-a^2=\pm\sqrt{2}bc\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\pm\sqrt{2}bc}{2bc}=\pm\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}A=45^0\\A=135^0\end{matrix}\right.\)
kết quả ra 60 hoặc 120