K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

Câu d nè bn.

d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)

➡️Góc ABC = 60°

mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)

➡️∆ BFC đều

➡️BC = FC = FB

✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)

➡️AB = 1/2 BC (t/c)

➡️BC = 2 AB

Theo Pitago ta có: 

BC 2 = AB 2 + AC 2

➡️(2 AB) 2 = AB 2 + AC 2 

➡️4 AB 2 - AB 2 = AC 2

➡️3 AB 2 = AC 2

➡️3 AB 2 = 25

➡️AB 2 = 25 ÷ 3 = 25/3

Vậy ta có: BC 2 = 25/3 + 25 = 100/3

➡️BC = √100/3

mà BC = FC (cmt)

➡️FC = √100/3

Vậy đó, hok tốt nhé

5 tháng 5 2022

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

b) Do \(AD=AB\) nên \(CA\) là trung tuyến 

Mà \(AC\cap BK=E\) với \(BK\) là trung tuyến

\(\Rightarrow E\) là trọng tâm \(\Delta BCD\)

\(\Rightarrow CE=\dfrac{2}{3}AC=\dfrac{2}{3}.6=4\left(cm\right)\Rightarrow AE=2\left(cm\right)\)

c) Ta có \(CA\) vừa là trung tuyến vừa là đường cao \(\Delta BCD\)

\(\Rightarrow\Delta BCD\) cân tại \(C\Rightarrow CB=CD\)

21 tháng 12 2021

a: Xét ΔBAM và ΔBEM có

BA=BE

\(\widehat{ABM}=\widehat{EBM}\)

BM chung

Do đó: ΔBAM=ΔBEM

Suy ra: MA=ME

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

26 tháng 4 2019

a) AC = ? 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:

AC2 = AB2 + BC2

        = 52 + 122 = 25 + 144 = 169 

⇒ AC = 13 (cm)

b) ΔEAD cân

Xét hai tam giác vuông ABE và DBE có:

AB = BD (gt)

BE là cạnh chung

Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)

⇒ EA = ED (hai cạnh tương ứng)

⇒ ΔEAD cân tại E.

c) K là trung điểm của DC.

Ta có: BE = 4, BC = 12 

⇒ BE = 1/3 BC 

Hay E là trọng tâm của ΔACD.

⇒ AE là đường trung tuyến ứng với cạnh DC

⇒ K là trung điểm của DC.

d) AD < 4EK 

Ta có: EA > AB, ED > BD

Mà AD = AB + BD,     AE = ED (câu b)

⇒ 2AE > AD 

Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA 

Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)

26 tháng 4 2019

B A D C E

18 tháng 4 2021

a) Ta có: ABD^+ABC^=1800(hai góc kề bù)

ACE^+ACB^=1800(hai góc kề bù)

mà ABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)

nên ABD^=ACE^

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

ABD^=ACE^(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Ta có: AD=AE(cmt)

nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MD=ME(M là trung điểm của DE)

nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của DE

⇔AM⊥DE

hay AM⊥BC(đpcm)

13 tháng 5 2019

a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:

\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)

Ủng hộmi nha

13 tháng 5 2019

A B C D E

a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm

\(\Rightarrow BC^2=AB^2+AC^2\)

     \(BC^2=6^2+8^2\)

     \(BC^2=36+64\)

    \(BC^2=100\)

    \(BC=10\)

Suy ra cạnh BC = 10cm

b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:

      \(\widehat{BAC}=\widehat{DEB}=90^o\)

         \(\widehat{B}\)chung

       \(BD=BC\left(gt\right)\)

\(\Rightarrow\Delta BAC=\Delta BED\)

Vậy...