Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N K
a) Xét tam giác BMC và tam giác ABC có :
- Đáy MC = 1/2 Đáy AC
- Chung chiều cao hạ từ đỉnh B
=> S tam giác BMC = 1/2 S tam giác ABC
S tam giác BMC là : 180 x 1/2 = 90 (cm2)
* Xét tam giác BAN với tam giác ABC có :
- Đáy BN = 2/3 Đáy BC
- Chung chiều cao hạ từ đỉnh A
=> S tam giác BAN = 2/3 S tam giác ABC
S tam giác BAN là : 180 x 2/3 = 120 (cm2)
*) Xét tam giác NAC và tam giác ABC có :
Đáy NC = 1/3 Đáy BC
Chung chiều cao hạ từ đỉnh A
=> S tam giác NAC = 1/3 S tam giác ABC
S tam giác NAC là : 180 x1/3 = (60 cm2)
*) Xét tam giác NAC với tam giác NAM có :
- Đáy AM = 1/2 Đáy AC
- Chung chiều cao hạ từ đỉnh N
=> S tam giác NAM = 1/2 S tam giác NAC
S tam giác NAM là : 60 x 1/2 = 30 (cm2)
S tứ giác AMNB là 120 + 30 = 150 (cm2)
b) *) Xét tam giác BAN và tam giác BAK có :
- Đáy AK = 1/2 Đáy AN
- Chung chiều cao hạ từ đỉnh B
=> S tam giác BAK = 1/2 S tam giác BAN
S tam giác BAK là : 120 x 1/2 = 60 (cm2)
Đáp số : a) BMC = 90 cm2 ; AMNB = 150 cm2
b) BAK = 60 cm2
Hai tg ABM và tg ABC có chung đường cao từ B->AC nên
\(\frac{S_{ABM}}{S_{ABC}}=\frac{AM}{AC}=\frac{1}{4}\Rightarrow S_{ABM}=\frac{S_{ABC}}{4}\)
\(\Rightarrow S_{BCM}=S_{ABC}-S_{ABM}=\frac{3xS_{ABC}}{4}\)
Hai tg CEM và tg BCM có chung đường cao từ C->BM nên
\(\frac{S_{CEM}}{S_{BCM}}=\frac{EM}{BM}=\frac{1}{4}\Rightarrow S_{CEM}=\frac{S_{BCM}}{4}=\frac{1}{4}x\frac{3xS_{ABC}}{4}=\frac{3xS_{ABC}}{16}\)
\(MB=4xMC\Rightarrow BC=5xMC\Rightarrow\frac{BC}{MC}=5\)
Hai tg ABC và tg MAC có chung đường cao từ A->BC nên
\(\frac{S_{ABC}}{S_{MAC}}=\frac{BC}{MC}=5\Rightarrow S_{ABC}=5xS_{MAC}\)