Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEF và ΔCED có
AE=CE(E là trung điểm của AC)
\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)
EF=ED(gt)
Do đó: ΔAEF=ΔCED(c-g-c)
⇒AF=CD(hai cạnh tương ứng)
b) Xét ΔABC có
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒DE//BC và \(DE=\dfrac{1}{2}BC\)(Định lí 2 về đường trung bình của tam giác)
a) Xét ΔAED và ΔCEF có
EA=EC(E là trung điểm của AC)
\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)
ED=EF(gt)
Do đó: ΔAED=ΔCEF(c-g-c)
⇒AD=CF(hai cạnh tương ứng)
mà AD=BD(D là trung điểm của AB)
nên CF=BD(đpcm)
Ta có: ΔAED=ΔCEF(Cmt)
nên \(\widehat{ADE}=\widehat{CFE}\)(hai góc tương ứng)
mà \(\widehat{ADE}\) và \(\widehat{CFE}\) là hai góc ở vị trí so le trong
nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song)
hay CF//AB(đpcm)
a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm) a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm)
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: CF//AD và CF=AD
hay CF//AB và CF=BD
b: Xét ΔBCD và ΔFDC có
BC=FD
BD=FC
CD chung
Do đó: ΔBCD=ΔFDC
c: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔACB
Suy ra: DE//BC
hình tự vẽ nha
a) Xét tam giác AED và tam giác CEF có:
AE=EC (GT)
góc AED=góc CEF (đối đỉnh)
ED=EF (GT)
suy ra AD=CF
mà AD=BD (GT)
suy ra CF=BD
Xét tam giác ABC có: AD=DB (GT) và AE=EC (GT)
suy ra DE là đường trung bình của tam giác ABC (đ/n) suy ra DE=1/2BC (t/c)
mà DE=1/2DF (GT)
suy ra BC=DF
Xét tứ giác DBCF có: CF=DB, DF=BC (CMT)
suy ra: tứ giác DBCF là hình bình hành (dhnb) suy ra CF//AB
b) Có DE là đường trung bình của tam giác ABC (CMT) suy ra DE//BC (t/c)
Có DE=1/2BC (CMT) hay BC=2.DE
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
GT | tam giác ABC D,E: lần lượt là trung điểm AB,AC F thuộc tia đối ED, EF=ED |
KL | a)CF=BD và CF//AB b)DE//BC và BC=2.DE |
a)Xét tam giác ABC có :
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
=>DE là đường trung bình của tg ABC
=>DE=\(\dfrac{1}{2}BC\)
và DE//BC
Ta có DE=EF(gt)
=>DE+EF=2.DE=2.\(\dfrac{1}{2}.BC=BC\)
hay DF=BC
Xét tứ giác DFCB có:
DF=BC(cmt)
DF//BC(DE//BC)
=> DFCB là hình bình hành (dhnb)
=>CF=BD và CF//BD
hay CF=BD và CF//AB
Vậy CF=BD và CF//AB
b)DE//BC(đã cm ở câu trên r)
DE=\(\dfrac{1}{2}BC\left(cmt\right)\)
=>BC=2DE
Vậy DE//BC và BC=2.DE
a ) Xét \(\Delta\)ADE và \(\Delta\)CFE có :
\(\Rightarrow\)\(\Delta\)ADE = \(\Delta\)CFE ( c - g - c )
\(\Rightarrow\)AD = CF ( 2 cạnh tương ứng )
Mà BD = AD ( D là trung điểm AB )
\(\Rightarrow\)BD = CF
b ) Ta có : \(\Delta\)ADE = \(\Delta\)CFE ( cmt )
\(\Rightarrow\)Â = Góc FCE ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên AB // CF
Hay BD // CF
\(\Rightarrow\)◇BDFC là hình thang
Mà ta có : BD = CF
\(\Rightarrow\)DF = BC
\(\Rightarrow\)2DE = BC ( vì E là trung điểm DF )