Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAED và ΔCEF có
EA=EC(E là trung điểm của AC)
\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)
ED=EF(gt)
Do đó: ΔAED=ΔCEF(c-g-c)
⇒AD=CF(hai cạnh tương ứng)
mà AD=BD(D là trung điểm của AB)
nên CF=BD(đpcm)
Ta có: ΔAED=ΔCEF(Cmt)
nên \(\widehat{ADE}=\widehat{CFE}\)(hai góc tương ứng)
mà \(\widehat{ADE}\) và \(\widehat{CFE}\) là hai góc ở vị trí so le trong
nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song)
hay CF//AB(đpcm)
a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm) a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm)
a) Xét tg ADE và CFE, có :
AE=EC(gt)
ED=EF(gt)
\(\widehat{AED}=\widehat{FEC}\left(đđ\right)\)
=> Tg ADE=CFE (c.g.c)
=> CF=AD
Mà AD=BD(gt)
=> CF=BD (đccm)
- Do tg ADE=CFE (cmt)
\(\Rightarrow\widehat{FCE}=\widehat{EAD}\)
Mà chúng là 2 góc slt
=> CF//AB (đccm)
b) Nối F với B
Xét tg BCF và FDB có :
BD=FC(cmt)
BF-cạnh chung
\(\widehat{ABF}=\widehat{BFC}\)(AB//CF)
=> Tg BCF=FDB(c.g.c)
\(\Rightarrow\widehat{DFB}=\widehat{FBC}\)
Mà chúng là 2 góc slt
=> DF//BC (DE//BC) (đccm)
-Do tg BCF=FDB(cmt)
=> DF=BC
Mà : \(DE=EF=\frac{1}{2}DF\)
\(\Rightarrow DE=\frac{1}{2}BC\)
=> BC=2DE (đccm)
#H