Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,c: SỬa đề. gó A<góc C
Vì góc A<góc C
mà góc A+góc C=120 độ
nên góc A<góc B<góc C
=>AB>BC
b: Xét ΔBAD có BA=BD và góc ABD=60 độ
nên ΔBAD đều
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
7 – 1 < CA < 7 + 1
6 < CA < 8
Mà CA là số nguyên
CA = 7 cm.
Vậy CA = 7 cm.
b) Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
AB + CA > BC
2 + CA > 6
CA > 4 cm
Mà CA là số nguyên và CA < 6 ( vì BC = 6 cm là cạnh lớn nhất của tam giác)
CA = 5 cm
Vậy CA = 5 cm.
a) Ta có: EF//BC(gt) =>\(\left\{{}\begin{matrix}\text{^EOB = ^OBC (SLT)}\\\text{ ^FOC = ^OCB (SLT)}\\\text{^AEF = ^B (Đồng vị)}\\\text{^AFE = ^C (Đồng vị)}\end{matrix}\right.\)
Có: ^OBC = ^OBA ( BF là phân giác ^B)
mà: ^EOB = ^OBC (cmt)
=> ^EOB = ^OBA => tam giác EBO cân tại E
Có: ^OCA = ^OCB ( BF là phân giác ^B)
mà: ^FOC = ^OCB (cmt)
=> ^FOC = ^OCA => tam giác FCO cân tại E
Ta có: ^AEF = ^B (cmt)
^AFE = ^C (cmt)
Mà ^B = ^C (tam giác ABC cân tại A)
=> ^AEF = ^AFE => tam giác AEF cân tại A
Có : ^ABF = ^CBF = \(\dfrac{1}{2}\) ^B ( BF là phân giác ^B)
^ACE = ^BCE = \(\dfrac{1}{2}\) ^B ( CF là phân giác ^C)
mà : ^B = ^C (tam giác ABC cân tại A)
=> ^ACE = ^ABF = ^CBF = ^BCE
Xét tg OBC có: ^OBC = ^OCB (^CBF = ^BCE) => tg OBC cân tại O
Xét tam giác FCO và tam giác EBO có:
^FOC = ^FOB ( đối đỉnh)
^FCO = ^EBO (^ABF = ^ACE)
OB = OC ( tg OBC cân tại O )
=> tam giác FCO = tam giác EBO(g-c-g)
a: góc C=90-65=25 độ
Vì góc C<góc B<A
nên AB<AC<BC
b: Xét ΔCDB có
DK,CA là trung tuyến
DK cắt CA tại M
=>M là trọng tâm
=>CM=2/3CA=10cm
tu ve hinh nhe
a) xet TG abm va TG: ACMco
AB=AC (gt)
BM=CM
AMla canh chung
==> TG ABM = TG ACM (c-c-c)
b)có _________________
M1=M2 (hai goc tuong ung)
M1+M2 =180 DO(KB)
==> M1=M2=180/2= 90 đo
===> AMvuong goc BC
c)phan c tuong tu
Ta có ∠B = 180o - 35o - 65o = 80o
Vì góc A là góc nhỏ nhất nên cạnh BC nhỏ nhất. Chọn B