Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất đường phân giác ta có:
\(\frac{DB}{DC}=\frac{AB}{AC}\left(1\right)\)
\(\frac{EC}{EA}=\frac{BC}{BA}\left(2\right)\)
\(\frac{FA}{FB}=\frac{CA}{CB}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{DB}{DC}\cdot\frac{EC}{AE}\cdot\frac{FA}{FB}=\frac{AB}{AC}\cdot\frac{BC}{BA}\cdot\frac{CA}{CB}=\frac{AB\cdot BC\cdot CA}{AC\cdot BA\cdot CB}=1\)
=> ĐPCM
Nguồn: SGK
AD,BE,CF không là các đường phân giác vẫn đúng,miễn sao chúng đồng quy là OK !
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao