Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F I K 1 1 1
a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=4,8\left(cm\right)\)
b) Xét tam giác AEH và tam giác AHB có:
\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)
c) Xét tam giác AHC và tam giác AFH có:
\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)
\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ )
\(\Rightarrow AH^2=AC.AF\)
d) Xét tứ giác AEHF có:
\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)
\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )
\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)
Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)
\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)
Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)
Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)
Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)
Xét tam giác ABC và tam giác AFE có:
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)
e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)
Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC
\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc) (6)
Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF
\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc) (7)
Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)
\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)
K D H A B C
a) Xét tam giác ADC và tam giác BKC có:
\(\hept{\begin{cases}\widehat{C}\text{ chung}\\\widehat{BKC}=\widehat{ADC}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta ADC\approx\Delta BKC\)(g-g)
b) Xét tam giác BDM và tam giác BDH có :
\(\hept{\begin{cases}BD\text{ chung}\\\widehat{BDM}=\widehat{BDH}\left(=90^{\text{o}}\right)\\MD=DH\end{cases}}\Rightarrow\Delta BDM=\Delta BDH\left(c.g.c\right)\)
=> \(\widehat{BMD}=\widehat{BHD}\left(\text{góc tương ứng}\right)\)
=> \(\Delta MBH\text{ cân tại B}\)
c) Xét tam giác AHK và tam giác BMD có :
\(\hept{\begin{cases}\widehat{BMD}=\widehat{AHK}\left(=\widehat{BHD}\right)\\\widehat{BDM}=\widehat{HKA}\left(=90^{\text{o}}\right)\end{cases}\Rightarrow\Delta AKH\approx\Delta BMD\left(g-g\right)}\)
=> \(\Rightarrow\widehat{DBM}=\widehat{KAH}\text{ hay }\widehat{CBM}=\widehat{CAM}\)
A B C H D E F
e) Xét \(\Delta DHC\)và \(\Delta FBC\)có:
\(\widehat{BCF}\)chung.
\(\widehat{HDC}=\widehat{BFC}\left(=90^0\right)\).
\(\Rightarrow\Delta DHC~\Delta FBC\left(g.g\right)\).
\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)(tỉ số đồng dạng).
\(\Rightarrow CH.CF=CD.BC\)\(\left(1\right)\).
Xét \(\Delta DBH\)và \(\Delta EBC\)có:
\(\widehat{EBC}\)chung.
\(\widehat{BDH}=\widehat{BEC}\left(=90^0\right)\).
\(\Rightarrow\Delta DBH~\Delta EBC\left(g.g\right)\).
\(\Rightarrow\frac{BD}{BE}=\frac{BH}{BC}\)(tỉ số đồng dạng).
\(\Rightarrow BD.BC=BH.BE\)\(\left(2\right)\).
Từ \(\left(1\right)\)và \(\left(2\right)\), ta được:
\(CH.CF+BH.BE=CD.BC+BD.BC\).
\(\Rightarrow CH.CF+BH.BE=BC\left(CD+BD\right)=BC.BC=BC^2\)(điều phải chứng minh).