Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AHchung
Do đo: ΔAHB=ΔAHC
b: HB=HC=BC/2=3cm
=>AH=4cm
c: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
Suy ra BM=CN
Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đo: ΔNBC=ΔMCB
Suy ra: góc KBC=góc KCB
=>ΔKBC cân tại K
=>KB=KC
=>KN=KM
hay ΔKNM cân tại K
d: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
A B C M N E I
a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)
\(\Rightarrow\) \(AB=AC\) hay \(\frac{1}{2}AB=\frac{1}{2}AC\) và \(BM\)và \(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)
\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)
Xét \(\Delta AMN\)có\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)
b)Có
- \(M\)là trung điểm của \(AC\)(do \(BM\)là đường trung tuyến )
- \(N\)là trung điểm của \(AB\)(....)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow MN//BC\left(dpcm\right)\)
có 3 cách
cách 1
cách 2
cách 3
a) vì A trung điểm DH
E trung điểm HC
=>F là trọng tâm tam giác DHC
=>HF cắt CD tại TĐ K của CD
b) vì F là trọng tâm tam giác HDC nên HF/HK=1/3
mà HK=1/2CD (do tam giác DHC vuông có HK là trung tuyến)
=>HF=1/3 CD
k nha
a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)
mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN
=> Tam giác AMN cân tại A
b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)
<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)
=> AH=CK
Bài gì mà thiếu dữ kiện ghê vậy?
nó là bài toán ngược lại của bài toán : cho tam giác ABC cân CM hai đường phân giác ứng với hai cạnh bên bằng nhau