Cho tam giác ABC có BC<AC, trung tuyến CD. Đường tròn nội tiếp các tam giác ACD...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

B A M ^ = C A M ^ =>  B M ⏜ = M C ⏜ => OM ⊥ BC => BC//DE

17 tháng 4 2020

a) Xét (O) có :

AB là tiếp tuyến tại B

AC là tiếp tuyến tại C 

AB cắt AC tại A

\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)

Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau

\(\Rightarrow\)ABOC là tg nt

b) Xét (O) có 

\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE

\(\widehat{BDE}\)là góc nt chắn cung BE

\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)

Xét \(\Delta ABEvà\Delta ADB:\)

\(\widehat{BAD}\)chung

\(\widehat{ABE}=\widehat{BDE}\)

\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)

\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)

c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)

Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)

Suy ra \(\widehat{AOC}=\widehat{ACB}\)