Cho...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ba điểm không thẳng hàng sẽ tạo thành một tam giác. Để đường tròn qua hết 3 điểm đó thì đường tròn đó sẽ là đường tròn ngoại tiếp của tam giác.
Vì 3 điểm chỉ tạo nên 1 tam giác cho nên tam giác cúng chỉ có 1 đường tròn ngoại tiếp duy nhất.
Kết luận: chỉ có 1.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D I J O K
a) Gọi tiếp điểm của \(\left(I\right),\left(J\right)\) là \(K\)
Ta có \(\frac{DA+DB-AB}{2}=DK=\frac{DA+DC-AC}{2}\Leftrightarrow AB-AC=DB-DC\)
Vậy điểm \(D\) nằm trên cạnh \(BC\) và thỏa \(AB-AC=DB-DC\).
Từ đó, ta dựng điểm \(D\) như sau: (Giả sử \(AB>AC\))
B1: Lấy \(E\) trên cạnh \(AB\) sao cho \(AE=AC\)
B2: Lấy \(F\) trên cạnh \(BC\) sao cho \(BF=BE\)
B3: Lấy trung điểm \(D\) của \(CF\)
b) Dễ thấy:
\(\widehat{OAC}=\widehat{OAJ}+\widehat{JAC}=90^0-\widehat{AIJ}+90^0-\widehat{AJI}=\widehat{IAJ}\)
Tương tự \(\widehat{OAB}=\widehat{IAJ}\). Vậy \(O\) nằm trên phân giác của \(\widehat{BAC}.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
b, HE = 4 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Theo tc 2 tt cắt nhau: \(AC=AM;BM=BD\)
\(\Rightarrow AC+BD=AM+BM=AB\)
b. \(\left\{{}\begin{matrix}\widehat{AMO}=\widehat{ACO}=90^0\\AC=AM\\AO.chung\end{matrix}\right.\Rightarrow\Delta AOC=\Delta AOM \)
\(\Rightarrow\widehat{COA}=\widehat{AOM}=\dfrac{1}{2}\widehat{COM}\)
\(\left\{{}\begin{matrix}\widehat{ODB}=\widehat{OMB}=90^0\\BD=MB\\OB.chung\end{matrix}\right.\Rightarrow\Delta OBD=\Delta OBM\\ \Rightarrow\widehat{DOB}=\widehat{BOM}=\dfrac{1}{2}\widehat{DOM}\)
\(\Rightarrow\widehat{AOB}=\widehat{AOM}+\widehat{BOM}=\dfrac{1}{2}\left(\widehat{COM}+\widehat{DOM}\right)=\dfrac{1}{2}\cdot180^0=90^0\\ \Rightarrow\Delta OAB\text{ vuông tại O}\)
c. Áp dụng HTL: \(AM\cdot MB=OM^2=R^2\)
Mà \(CD=2R;AM=AC;BM=BD\)
Vậy \(AC\cdot BD=AM\cdot BM=R^2=\left(\dfrac{CD}{2}\right)^2=\dfrac{CD^2}{4}\)
A B C H P Q S R M
a) \(MH=AH-AM=h-x\)
Theo định lí Thales \(\frac{PQ}{BC}=\frac{AM}{AH}\) hay \(\frac{PQ}{a}=\frac{x}{h}\Rightarrow PQ=\frac{ax}{h}\)
Vậy \(S_{PQRS}=PQ.MH=\left(h-x\right).\frac{ax}{h}\)
b) Đặt \(f\left(x\right)=S_{PQRS}=\frac{\left(h-x\right)ax}{h}=-\frac{a}{h}x^2+ax\)
Suy ra \(maxS_{PQRS}=maxf\left(x\right)=f\left(\frac{h}{2}\right)=-\frac{a}{h}.\frac{h^2}{4}+\frac{ah}{2}=\frac{ah}{4}\)(không đổi)
Dấu "=" xảy ra khi và chỉ khi \(M\) là trung điểm của \(AH.\)
cảm ơn bạn Nguyễn Tất Đạt nhìu nhé