Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý cuối câu b.
Sử dụng công thức tính diện tích tam giác ABC. Ta có:
\(\frac{1}{2}AB.\sin\widehat{A}.AC=\frac{1}{2}AH.BC\)
=> \(AB.\sin\widehat{A}.AC=AH.BC\)
Ta đã tính được: \(AH=3\sqrt{3};AB=6;AC=2\sqrt{13};MN=\frac{18\sqrt{13}}{13};BC=8\) ( để tính MN sử dụng tam giác đồng dạng ở câu b ý 1 nha)
=> \(\sin\widehat{A}.AH=\frac{AH^2.BC}{AB.AC}=\frac{18\sqrt{13}}{13}=MN\)
b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7
a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC
=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)
b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm
c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm
Bạn tự vẽ hình nha
a) Xét \(\Delta\)ABC có:BI,CK là hai đường cao
Mà BI cắt CK tại H(gt)
=> H là trực tâm \(\Delta\)ABC
=>AH cũng là đường cao thứ 3 của \(\Delta\)ABC
Xét \(\Delta\)ABI và \(\Delta\)ACK có:
^AIB=^AKC =90(gt)
^A: góc chung
=> \(\Delta\)ABI ~\(\Delta\)ACK(g.g)
b) xét \(\Delta\)ADC và \(\Delta\)AID có:
^ADC=^AID=90(gt)
^A:góc chung
=> \(\Delta\)ADC~\(\Delta\)AID(g.g)
=>\(\frac{AD}{AI}=\frac{AC}{AD}\)
=> AD^2 =AC*AI