K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BEC=góc BFC=90 độ

=>BCEF nội tiếp

b: Xét ΔAFE và ΔACB có

góc AFE=góc ACB

góc A chung

=>ΔAFE đồng dạng với ΔACB

=>\(\dfrac{EF}{BC}=\dfrac{AE}{AB}=cos60=\dfrac{1}{2}\)

=>EF=10cm

a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

b: Xét ΔABE vuông tại E có \(cosBAE=\dfrac{AE}{AB}\)

=>\(\dfrac{AE}{AB}=cos60=\dfrac{1}{2}\)

ta có: BFEC là tứ giác nội tiếp

=>\(\widehat{BFE}+\widehat{BCE}=180^0\)

mà \(\widehat{BFE}+\widehat{AFE}=180^0\)(kề bù)

nên \(\widehat{AFE}=\widehat{ACB}\)
Xét ΔAFE và ΔACB có

\(\widehat{AFE}=\widehat{ACB}\)

\(\widehat{FAE}\) chung

Do đó: ΔAFE~ΔACB

=>\(\dfrac{FE}{CB}=\dfrac{AE}{AB}=\dfrac{1}{2}\)

=>\(\dfrac{FE}{20}=\dfrac{1}{2}\)

=>FE=10(cm)

8 tháng 10 2015

A B C E F H O I K

a) Nối HK; BK; CK

+) Góc ACK ; góc ABK là góc nội tiếp chắn nửa đường tròn (O;R) => góc ACK = 90; góc ABK = 90o

=> AB | BK; AC | CK

Mà AB | CF; AC | BE nên CF // BK ; BE // CK => T/g BHCK là hình bình hành => 2 đường chéo BC ; HK cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC => I là trung điểm của HK

+) Xét tam giác AKH có: O; I là trung điểm của AK; HK => OI là đường trung bình của tam giác AKH => AH = 2.OI

b) +) Góc BAC là nội tiếp chắn cung BC => Góc BAC = 1/2 góc BOC ( Mối liên hệ giữa góc ở tâm và góc nội tiếp)

=> góc BOC = 2.60= 120. Mà tam giác BOC cân tại O ; OI là đường trung tuyến nên đồng thời là đường p/g và đường cao

=> góc BOI = 1/2 góc BOC = 60

+) Xét tam giác vuông BIO có: BI = OB.sin BOI = R. sin 60\(\frac{R\sqrt{3}}{2}\) => BC = 2.BI = \(R\sqrt{3}\)

Vậy....

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: góc DFC=góc EBC

góc EFC=góc DAC

góc EBC=góc DAC

=>góc DFC=góc EFC