K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

\(\widehat{BAM}\) chung

Do đó: ΔABM~ΔACN

b: Xét ΔPNB vuông tại N và ΔPMC vuông tại M có

\(\widehat{NPB}=\widehat{MPC}\)(hai góc đối đỉnh)

Do đó: ΔPNB~ΔPMC

=>\(\dfrac{PB}{PC}=\dfrac{NB}{MC}\)

=>\(PB\cdot MC=NB\cdot PC\)

c: Ta có; ΔAMB~ΔANC

=>\(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

=>\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔABC

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

góc BAM chung

=>ΔABM đồng dạng với ΔACN

=>AM/AN=AB/AC

=>AM*AC=AN*AB và AM/AB=AN/AC

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC

góc MAN chung

=>ΔAMN đòng dạng với ΔABC

c: ΔAMN đồng dạng với ΔABC

=>S AMN/S ABC=(AM/AB)^2=(cos60)^2=1/4

=>S ABC=4*S AMN

7 tháng 4 2021

undefinedundefined

a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{BAM}\) chung

Do đó: ΔAMB\(\sim\)ΔANC(g-g)

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)

\(\widehat{NAM}\) chung

Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)

a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có

góc A chung

=>ΔAMB đồng dạng vơi ΔANC

=>AM/AN=AB/AC

=>AM*AC=AB*AN; AM/AB=AN/AC

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC
góc A chung

=>ΔAMN đồng dạng với ΔABC

=>góc AMN=góc ABC

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

\(\widehat{BAM}\) chung

Do đó: ΔABM\(\sim\)ΔACN

b: Xét ΔHNB vuông tại N và ΔHMC vuông tại M có 

\(\widehat{NHB}=\widehat{MHC}\)

Do đó: ΔHNB\(\sim\)ΔHMC

Suy ra: HN/HM=HB/HC

hay \(HN\cdot HC=HB\cdot HM\)

30 tháng 3 2022

a, Xét ΔABM và ΔACN có 

\(\widehat{N}=\widehat{M}=90^0\)

\(\widehat{A}:chung\)

\(\Rightarrow\Delta ABM\sim\Delta ACN\left(g-g\right)\)

b, Xét ΔNHB và ΔMHC có :

\(\widehat{N}=\widehat{M}=90^0\)

\(\widehat{NHB}=\widehat{MHC}\left(đối\cdotđỉnh\right)\)

\(\Rightarrow\Delta NHB\sim\Delta MHC\left(g-g\right)\)

\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HN}{HM}\)

\(\Rightarrow HB.HM=HC.HN\left(đpcm\right)\)

a: Xét ΔBEH vuông tại E và ΔBMC vuông tại M có

góc B chung

DO đó: ΔBEH đồng dạng với ΔBMC

Suy ra: BE/BM=BH/BC

hay \(BE\cdot BC=BH\cdot BM\)

b: Xét ΔCEH vuông tại E và ΔCNB vuông tại N có

góc C chung

Do đó: ΔCEH đồng dạng với ΔCNB

Suy ra: CE/CN=CH/CB

hay \(CE\cdot CB=CH\cdot CN\)

e: Xét ΔBNC vuông tại N và ΔBEA vuông tại E có

góc B chung

DO đó: ΔBNC đồng dạng với ΔBEA

Suy ra: BN/BE=BC/BA

hay BN/BC=BE/BA

Xét ΔBNE và ΔBCA có

BN/BC=BE/BA

góc B chung

Do đó: ΔBNE đồng dạng với ΔBCA