Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này cũng là CHH ??
Hình tự vẽ nha bạn :))
a, Xét \(\Delta BOE\) và \(\Delta COA\) có:
\(\left\{{}\begin{matrix}BO=OC\left(gt\right)\\\widehat{EBC}=\widehat{ACO}\left(AC//BE\right)\\\widehat{BOE}=\widehat{AOC}\end{matrix}\right.\)
\(\Rightarrow\Delta BOE=\Delta COA\left(g.c.g\right)\)
b, Xét \(\Delta AHC\) và \(\Delta KHC\) có:
HC chung
\(\widehat{AHC}=\widehat{KHC}\left(=1v\right)\)
AH = HK (gt)
\(\Rightarrow\Delta AHC=\Delta KHC\left(c.g.c\right)\)
\(\Rightarrow AC=CK\) mà \(AC=BE\) (theo câu a)
\(\Rightarrow CK=BE\)
c,\(\Delta BOE=\Delta COA\) (câu a)
\(\Rightarrow OE=AO\)
\(\Rightarrow O\) là trung điểm của AE
\(\Delta AKE\) có \(\left\{{}\begin{matrix}AH=HK\left(gt\right)\\AO=OE\left(c/m\right)\end{matrix}\right.\)
\(\Rightarrow\) HO là đường trung bình của \(\Delta AKE\)
\(OH=\dfrac{1}{2}KE\)
A H B C E K O 1 2 x
a) Gọi đường thẳng song song với AC là Bx ta có:
\(Bx//AC\Leftrightarrow\widehat{ACB}=\widehat{CBE}\left(slt\right)\)
Xét tam giác \(\Delta BOE\) và \(\Delta COA\) có:
\(\widehat{ACB}=\widehat{CBE}\left(cmt\right)\)
\(\widehat{O_1}=\widehat{O_2}\left(dd\right)\)
\(OB=OC\left(gt\right)\)
\(\Rightarrow\Delta BOE=\Delta COA\left(g-c-g\right)\)
\(\Rightarrow AC=BE;OA=OE\left(hctu\right)\)
b) \(\Delta ACK\) có:
AH là đường cao đồng thời là đường trung tuyến
\(\Rightarrow\Delta ACK\) cân (đ/lí)
\(\Rightarrow AC=CK\left(hctu\right)\)
Lại có: \(AC=BE\left(cmt\right)\)
\(\Rightarrow CK=BE\)
c) \(\Delta AKE\) có:
\(AH=HK\left(gt\right)\)
\(OA=OE\left(cmt\right)\)
\(\Rightarrow OH//KE;OH=\dfrac{1}{2}KE\left(d/li\right)\) ( theo kiểu lớp 7 vậy là được)
Theo kiểu lớp 8:
\(\Delta AKE\) có:
\(AH=HK\left(gt\right)\)
\(OA=OE\left(cmt\right)\)
\(\Rightarrow OH\) là đường trung bình của \(\Delta AKE\)
\(\Rightarrow OH//KE;OH=\dfrac{1}{2}KE\left(d/li\right)\)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng