Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đường trung trực của `AC` cắt `AB` tại `D.`
`@` Theo tính chất của đường trung trực (điểm nằm trên đường trung trực của `1` đoạn thẳng thì cách `2` đầu mút đoạn thẳng đó)
`-> \text {DA = DC}`
Xét `\Delta ACD`: `\text {DA = DC}`
`-> \Delta ACD` cân tại `D.`
`-> \hat {A} = \hat {ACD}` `(1)`
Vì `\text {CD}` là tia phân giác của $\widehat {ACB} (g$$t)$
`->` $\widehat {ACD} = \widehat {BCD} =$ `1/2` $\widehat {ACB}$ `(2)`
Từ `(1)` và `(2)`
`->` $\widehat {ACB} = \widehat {2C_2} = \widehat {2A}$
Mà `\hat {A}=35^0`
`->` $\widehat {ACB}$`=35^0*2=70^0`
Xét `\Delta ABC`:
$\widehat {BAC} + \widehat {ABC}+ \widehat {ACB}=180^0 (\text {định lý tổng 3 góc trong 1 tam giác})$
`-> 35^0+` $\widehat {ABC} + 70^0=180^0$
`->` $\widehat {ABC}= 180^0-35^0-70^0=75^0$
Xét các đáp án trên `-> C (tm)`.
a)
Ta có:
\(\widehat{AIC}=180^O-\widehat{IAC}-\widehat{ICA}\)
\(\Rightarrow\widehat{AIC}=180^O-\frac{1}{2}\widehat{BAC}-\frac{1}{2}\widehat{BCA}\)
\(\Rightarrow\widehat{AIC}=180^O-\frac{1}{2}\left(\widehat{BAC}+\widehat{BCA}\right)\)
\(\Rightarrow\widehat{AIC}=180^O-\frac{1}{2}\left(180^O-\widehat{ABC}\right)\)
\(\Rightarrow\widehat{AIC}=180^O-\frac{1}{2}\left(180^O-60^O\right)\)
\(\Rightarrow\widehat{AIC}=120^O\)
\(\Rightarrow\widehat{AIE}=180^O-\widehat{AIC}=60^O\)
b) Ta có ;
IF là phân giác \(\widehat{AIC}\)
\(\rightarrow\widehat{AIF}=\widehat{FIC}=\frac{1}{2}\widehat{AIC}=60^O\)
\(\rightarrow\widehat{EIA}=\widehat{AIF}\)
c)
Ta có : BD, CE là phân giác \(\widehat{ABC},\widehat{ACB}\)
\(\rightarrow\)I là giao ba đường phân giác
\(\rightarrow\)AI là phân giác \(\widehat{BAC}\Rightarrow\widehat{EAI}=\widehat{IAD}\)
Kết hợp \(\Delta AEI,\widehat{AFI}\) có chung cạnh AI
\(\Rightarrow\Delta AEI=\Delta AFE\left(c.g.c\right)\)
#Shinobu Cừu
Bạn ơi đây là hình bài làm nhá, nếu bạn không thấy thì vào thống kê hỏi đps của mik là sẽ thấy nha
B
b