Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)vẽ hình
áp dụng định lý pitago ta có:AB=\(\sqrt{BC^2}-AC^2=\)\(5\sqrt{5}\)(cm)
tag C=AB/AC=5\(\sqrt{5}\)/5=\(\sqrt{5}\)/2
suy ra C=48 độ,B=42độ
b) tương tự
ok mik sẽ giải thích chi tiết cho bạn nha:còn hình ở phía dưới
áp dụng định lý pitago vào tam giác vuông ABC:
BC=\(\sqrt{AB^2+AC^2}=\sqrt{7^2+12^2}=\sqrt{193}\)
ta tìm tagC=\(\dfrac{7}{12}=0,58\)
sau đó ta bấm vào máy tính Casio là :SHIFT ,tag,0,58 máy tính hiện lên là 30,11
\(\Rightarrow C=30.11độ\) B=180-90-30,11=59,89
mà giải tam giác nghĩa là tìm các cạch và các góc còn thiếu của tam giác đó
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
Lời giải:
a)
Góc $a$ nhọn nên $\cos a,\sin a>0$
\(\cos a-\sin a=\frac{1}{5}(1)\Rightarrow (\sin a-\cos a)^2=\frac{1}{25}\Leftrightarrow \sin ^2a+\cos ^2a-2\sin a\cos a=\frac{1}{25}\)
\(\Leftrightarrow 1-2\sin a\cos a=\frac{1}{25}\Rightarrow 2\sin a\cos a=\frac{24}{25}\)
\(\Rightarrow (\sin a+\cos a)^2=\sin ^2a+\cos ^2a+2\sin a\cos a=1+\frac{24}{25}=\frac{49}{25}\)
\(\Rightarrow \sin a+\cos a=\frac{7}{5}(2)\)
Từ \((1);(2)\Rightarrow \cos a=\frac{4}{5}; \sin a=\frac{3}{5}\)
\(\Rightarrow \cot a=\frac{\cos a}{\sin a}=\frac{4}{5}:\frac{3}{5}=\frac{4}{3}\)
b) Tam giác $ABC$ vuông tại $C$ nên $A,B$ là góc nhọn. Khi đó các thông số lượng giác của nó dương.
\(\cos A=\frac{AC}{AB}=\frac{5}{13}\)
\(\cos ^2A+\sin ^2A=1\Rightarrow \sin ^2A=1-\cos ^2A=1-(\frac{5}{13})^2\)
\(\Rightarrow \sin A=\frac{12}{13}\)
\(\cot A=\frac{\cos A}{\sin A}=\frac{5}{13}:\frac{12}{13}=\frac{5}{12}\)
\(\Rightarrow \tan B=\frac{AC}{BC}=\cot A=\frac{5}{12}\)
Dùng BĐT Bunhiacopski:
Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2\)
\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)
Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn
1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)
\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)
\(=\sqrt{4}=2\)
1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{25}=5\)
a) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{6}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{6}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)=2\sqrt{2}\)
b) Tương tự
b) \(\sqrt{7-2\sqrt{10}}\) - \(\sqrt{7+2\sqrt{10}}\)
= \(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
= \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
= \(\left(\sqrt{5}-\sqrt{2}\right)\) - \(\left(\sqrt{5}+\sqrt{2}\right)\)
= \(\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
= \(-2\sqrt{2}\)