Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi F là trung điểm của EC
+ ΔBEC có \(\left\{{}\begin{matrix}BM=MC\\CF=EF\end{matrix}\right.\)
=> MF là đg trung bình của ΔBEC
=> MF // BE => MF // DE
+ ΔAMF có \(\left\{{}\begin{matrix}AD=DM\\DE//MF\end{matrix}\right.\)
=> DE là đg trung bình của ΔAMF
=> AE = EF => \(AE=\frac{1}{2}EC\)
Cho hình bình hành ABCD, tia phân giác của góc D và góc B cắt AB và CD tại M và N
a, chứng minh góc AMD = góc ABN
b, Chứng minh tứ giác DMBN là hình bình hành
c, tia phân giác của góc A cắt DM và BN tại H và G, tia phân giác của góc C cắt DM và BN tại E và F Chứng minh tứ giác HEFG là hình chữ nhật
a: Xét tứ giác AECF có
AF//CE
AF=CE
Do đó: AECF là hình bình hành
b: Xét ΔDHC có
E là trung điểm của DC
EI//HC
Do đó: I là trung điểm của DH
=>DI=IH(1)
Xét ΔAIB có
F là trung điểm của AB
FH//AI
Do đó: H là trung điểm của BI
=>BH=HI(2)
Từ (1) và (2) suy ra DI=IH=BH
mk chỉ giải 2 câu thoy nha!!!
xét tứ giác BHCD có BC\(\cap\)HD tại M
màMB=MC,MH=MD=>△BMD=△HMC(c.g.c)=>BD=HC(1)
△BMH=△CMD(c.g.c)=>BH=CD(2)
từ (1) ,(2) =>BHCD là hbh
do H là giao của HF và CE =>HϵCF=>HF//BD(do CH//BD)
=>\(\widehat{F}=\widehat{B}=90^o\)=>△ABD vuông tại B
a) Xét tứ giác AMIN, ta có:
\(\widehat{A}\) = 90o (△ABC vuông tại A)
\(\widehat{M}\) = 90o (IM ⊥ AB tại M)
\(\widehat{N}\) = 90o (IN ⊥ AC tại N)
Vậy tứ giác AMIN là hình chữ nhật.
b) *Xét △AIC, ta có:
IA = IC (AI là đường trung tuyến của △vABC)
⇒ △AIC cân tại A
Mà IN ⊥ AC (gt)
Nên IN là đường cao của △AIC
⇒ Đồng thời là đường trung tuyến
⇒ AN = NC
*Xét tứ giác ADCI, ta có:
IN = ND (gt)
AN = NC (cmt)
⇒ ADCI là hình bình hành
Mà AI = IC (cmt)
Vậy ADCI là hình thoi.
c) Gọi O là giao điểm BN và AI
Vì ADCI là hthoi (cmt)
⇒ AI // CD
⇒ \(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)
*Cm: △INP = △DNK (g.c.g)
⇒ IP = DK
*Vì ADCI là hthoi (cmt)
⇒ AI = DC
*Ta có:
AN = NC (cmt)
⇒ BN là đường trung tuyến
*Xét △ABC, ta có:
AI, BN là đường trung tuyến (gt,cmt)
Mà AI, BN cắt nhau tại B (theo cách vẽ)
Nên P là trọng tâm của △ABC
⇒ \(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)
Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)
a: Xét tứ giác AMBD có
I là trung điểm của AB
I là trung điểm của MD
Do đó: AMBD là hình bình hành
mà MA=MB
nên AMBD là hình thoi
=>DA//BM
b: Sửa đề: E là giao điểm của AM và CD
Xét tứ giác ACMD có
MD//AC
MD=AC
Do đó: ACMD là hình bình hành
Suy ra: AM cắt CD tại trung điểm của mỗi đường
=>AE=EM