K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có

AM chung

MB=MC

Do đó:ΔAMB=ΔAMC

b: Ta có: ΔAMB=ΔAMC

nên AB=AC; \(\widehat{BAM}=\widehat{CAM};\widehat{AMB}=\widehat{AMC}\)

c: Xét ΔNBC có

NM là đường cao

NM là đường trung tuyến

Do đó: ΔNBC cân tại N

=>NB=NC

Xét ΔANB và ΔANC có

AN chung

NB=NC

AB=AC

Do đó: ΔANB=ΔANC

28 tháng 11 2016

a). Ta có AM là đường trung trực của đoạn thẳng BC => AM\(\perp\) BC và BM=CM

Xét tam giác AMB vuông tại M và tam giác AMC vuông tại M có:

AM là cạnh chung.

BM=CM (cmt)

=> Tam giác AMB=tam giác AMC (hai cạnh góc vuông)

b). Tam giác AMB=tam giác AMC

=> AB=AC (hai cạnh tương ứng)

=> \(\widehat{BAM}\) = \(\widehat{CAM}\) (hai góc tương ứng)

=> \(\widehat{ABM}=\widehat{ACM}\) (hai góc tương ứng)

c). Xét tam giác ANB và tam giác ANC có:

AB=AC (cmt)

\(\widehat{BAN}=\widehat{CAN}\) (\(\widehat{BAM}=\widehat{CAM};N\in\) AM)

AN là cạnh chung.

=> Tam giác ANB=tam giác ANC (c.g.c)

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)

29 tháng 1 2020

ABCMabNI

a)Xét \(\Delta\)AMB và \(\Delta\)AMC

AB=AC(GT)

MB=MC(GT)

AM là cạnh chung

=>\(\Delta\)AMB=\(\Delta\)AMC

b)Ta có:\(\Delta\)AMB=\(\Delta\)AMC=>góc AMC=góc AMB=\(^{90^0}\)

=>AM\(\perp\)BC

Ta lại có:góc aAM=\(90^0\);góc AMB=\(90^0\)mà hai góc này nằm ở vị trí so le trong

=>a//BC

c)Xét \(\Delta\)AMC và \(\Delta\)CNA

AC là cạnh chung

a//BC=>góc MCA=góc NAC(hai góc so le trong)

b//AM=>góc MAC=góc ACN(hai góc so le trong)

=>​​​\(\Delta\)​AMC=​\(\Delta\)​CNA

d)Xét​\(\Delta\)​INC và\(\Delta\)IMA

góc NIC=góc AIM(đối đỉnh)

IC=IA(GT)

góc ACN=góc MAC(câu c)

=>\(\Delta\)INC=​\(\Delta\)​IMA

=>IN=IM

=>I là trung điểm của MN

Hk tốt ^-^

21 tháng 3 2020

a và b) Xét ΔAMBΔAMB và ΔAMCΔAMC có:

AMAM: chung

MB=MC(gt)MB=MC(gt)

AB=AC(gt)AB=AC(gt)

Vậy ΔAMB=ΔAMC(c.c.c)ΔAMB=ΔAMC(c.c.c)

⇒AMBˆ=AMCˆ⇒AMB^=AMC^

Mà AMBˆ+AMCˆ=180oAMB^+AMC^=180o

Nên AMBˆ=AMCˆ=AMB^=AMC^=180o2=90o180o2=90o

⇒AM⊥BC⇒AM⊥BC

Ta có a//BCa//BC vì cùng vuông góc với AMAM

c) Xét tứ giác ANCMANCM có:

Aˆ=Mˆ=90oCˆ=AMCˆ=90o(b//AM)A^=M^=90oC^=AMC^=90o(b//AM)

Nên ANCMANCM là hình chữ nhật ⇒{AM=NCAN=MC⇒{AM=NCAN=MC

Xét ΔAMCΔAMC và ΔCNAΔCNA có: ⎧⎩⎨⎪⎪AM=NCAMCˆ=ANCˆ=90oAN=MC{AM=NCAMC^=ANC^=90oAN=MC

Nên ΔAMCΔAMC==ΔCNAΔCNA(c.g.c)(c.g.c)

d) II là trung điểm ACAC ⇒I⇒I là giao 2 đường chéo của hình chữ nhật

⇒I⇒I là trung điểm MN

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

12 tháng 11 2017

A B C M N

a, xét tam giác ABM và tam giác ACM có:

AB=AC

AM chung

BM=CM

=> tam giác ABM= tam giác ACM (c.c.c)

b,

Tam giác ABM= tam giác ACM => góc BAM= góc CAM

=> AM là tia phân giác của góc BAC

c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC

=> A, M, N thẳng hàng

15 tháng 11 2023

còn thiếu câu b là tia AM nằm giữa 2 toa AB và AC nữa nhé