Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a). Ta có AM là đường trung trực của đoạn thẳng BC => AM\(\perp\) BC và BM=CM
Xét tam giác AMB vuông tại M và tam giác AMC vuông tại M có:
AM là cạnh chung.
BM=CM (cmt)
=> Tam giác AMB=tam giác AMC (hai cạnh góc vuông)
b). Tam giác AMB=tam giác AMC
=> AB=AC (hai cạnh tương ứng)
=> \(\widehat{BAM}\) = \(\widehat{CAM}\) (hai góc tương ứng)
=> \(\widehat{ABM}=\widehat{ACM}\) (hai góc tương ứng)
c). Xét tam giác ANB và tam giác ANC có:
AB=AC (cmt)
\(\widehat{BAN}=\widehat{CAN}\) (\(\widehat{BAM}=\widehat{CAM};N\in\) AM)
AN là cạnh chung.
=> Tam giác ANB=tam giác ANC (c.g.c)
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)
ABCMabNI
a)Xét \(\Delta\)AMB và \(\Delta\)AMC
AB=AC(GT)
MB=MC(GT)
AM là cạnh chung
=>\(\Delta\)AMB=\(\Delta\)AMC
b)Ta có:\(\Delta\)AMB=\(\Delta\)AMC=>góc AMC=góc AMB=\(^{90^0}\)
=>AM\(\perp\)BC
Ta lại có:góc aAM=\(90^0\);góc AMB=\(90^0\)mà hai góc này nằm ở vị trí so le trong
=>a//BC
c)Xét \(\Delta\)AMC và \(\Delta\)CNA
AC là cạnh chung
a//BC=>góc MCA=góc NAC(hai góc so le trong)
b//AM=>góc MAC=góc ACN(hai góc so le trong)
=>\(\Delta\)AMC=\(\Delta\)CNA
d)Xét\(\Delta\)INC và\(\Delta\)IMA
góc NIC=góc AIM(đối đỉnh)
IC=IA(GT)
góc ACN=góc MAC(câu c)
=>\(\Delta\)INC=\(\Delta\)IMA
=>IN=IM
=>I là trung điểm của MN
Hk tốt ^-^
a và b) Xét ΔAMBΔAMB và ΔAMCΔAMC có:
AMAM: chung
MB=MC(gt)MB=MC(gt)
AB=AC(gt)AB=AC(gt)
Vậy ΔAMB=ΔAMC(c.c.c)ΔAMB=ΔAMC(c.c.c)
⇒AMBˆ=AMCˆ⇒AMB^=AMC^
Mà AMBˆ+AMCˆ=180oAMB^+AMC^=180o
Nên AMBˆ=AMCˆ=AMB^=AMC^=180o2=90o180o2=90o
⇒AM⊥BC⇒AM⊥BC
Ta có a//BCa//BC vì cùng vuông góc với AMAM
c) Xét tứ giác ANCMANCM có:
Aˆ=Mˆ=90oCˆ=AMCˆ=90o(b//AM)A^=M^=90oC^=AMC^=90o(b//AM)
Nên ANCMANCM là hình chữ nhật ⇒{AM=NCAN=MC⇒{AM=NCAN=MC
Xét ΔAMCΔAMC và ΔCNAΔCNA có: ⎧⎩⎨⎪⎪AM=NCAMCˆ=ANCˆ=90oAN=MC{AM=NCAMC^=ANC^=90oAN=MC
Nên ΔAMCΔAMC==ΔCNAΔCNA(c.g.c)(c.g.c)
d) II là trung điểm ACAC ⇒I⇒I là giao 2 đường chéo của hình chữ nhật
⇒I⇒I là trung điểm MN
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
A B C M N
a, xét tam giác ABM và tam giác ACM có:
AB=AC
AM chung
BM=CM
=> tam giác ABM= tam giác ACM (c.c.c)
b,
Tam giác ABM= tam giác ACM => góc BAM= góc CAM
=> AM là tia phân giác của góc BAC
c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC
=> A, M, N thẳng hàng
a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AM chung
MB=MC
Do đó:ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
nên AB=AC; \(\widehat{BAM}=\widehat{CAM};\widehat{AMB}=\widehat{AMC}\)
c: Xét ΔNBC có
NM là đường cao
NM là đường trung tuyến
Do đó: ΔNBC cân tại N
=>NB=NC
Xét ΔANB và ΔANC có
AN chung
NB=NC
AB=AC
Do đó: ΔANB=ΔANC