Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AH vuông góc BC suy ra hình tam giác AHC vuông tại H, hình tam giác AHB vuông tại H
\(=>\) \(\widehat{C}+\widehat{HAC}=90^o\) ; \(\widehat{ABH}+\widehat{BAH}=90^o\)
Có: AI là phân giác \(\widehat{BAH}\)nên \(\widehat{IAH}\)= \(\widehat{IAB}=\frac{1}{2}\widehat{BAH}=\widehat{C}\)[ vì theo giả thiết có \(\widehat{BAH}=2\widehat{C}\)]
Suy ra \(\widehat{IAH}+\widehat{HAC}=90^o\)
\(=>\)\(\widehat{IAC}=90^o\)hay \(\widehat{IAE}=90^o=>\Delta IAE\)vuông tại A [1]
Lại có \(\widehat{AIE}=\widehat{IAB}+\widehat{IBA}\)[góc ngoài tại đỉnh I của \(\Delta ABI\)]
Mà BE là phân giác \(\widehat{ABH}\Rightarrow\widehat{IBA}=\frac{1}{2}\widehat{ABH}\)
Suy ra: \(\widehat{AIE}=\frac{1}{2}\left[\widehat{BAH}+\widehat{ABH}\right]=\frac{1}{2}.90^o=45^o\)[2]
Từ 1 và 2 suy ra \(\Delta AIE\)vuông cân tại A
Suy ra AE là phân giác ngoài của \(\Delta ABH\)tại A,BE là phân giác trong tại B của \(\Delta ABH\)
=> HE là phân giác ngoài tại H của \(\Delta BAH\)
=> HE là phân giác \(\widehat{AHC}\)
Vậy ta có điều phải chứng minh