Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
a)Xét tam giác ABM và tam giác CEM có:
BM=MC(gt)
\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)
AM=ME(gt)
\(\Rightarrow\)tam giác AMB=tam giác CME(c-g-c)
=> AB=CE(2 cạnh tương ứng)
Vì M là trung điểm của AE \(\Rightarrow AM=\frac{1}{2}AE\)
b) Bất đẳng thức đối với tam giác ACE là: AC+CE>AE
CE - AC < AE
Vì AB=CE(theo chứng minh trên) => AC+AB>AE \(\Rightarrow\frac{AC+AB}{2}>\frac{AE}{2}=AM\)(1)
AB - AC < AE \(\Rightarrow\frac{AB-AC}{2}< \frac{AE}{2}=AM\)(2)
Từ (1) và (2) \(\Rightarrow\frac{AB-AC}{2}< AM< \frac{AB+AC}{2}\)
a) Xét \(\Delta AMB\) và \(\Delta EMC\) có:
\(AM=EM\) (suy từ gt)
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
MB = MC (suy từ gt)
\(\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\)
b) Vì \(\Delta AMB=\Delta EMC\) (câu a)
\(\Rightarrow AB=EC\) (2 cạnh t/ư)
và \(\widehat{ABM}=\widehat{ECM}\) (2 góc t/ư)
mà 2 góc này ở vị trí so le trong nên \(AB\) // \(CE.\)
Bài 1 :
Xét tam giác ABC và ADE có :
góc EAD = góc CAB (đối đỉnh)
CA=EA (gt)
BA=DA (gt)
suy ra tam giác ABC=ADE (c.g.c)
suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )
Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM
Xét tam giác ENA và CMA có:
EN = CM ( cmt)
góc E = góc C (cmt)
AE = AC (gt)
suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng )
Xét tam giác NDA và MBA có:
góc D= góc B (cmt)
ND = MB (cmt )
DA = BA (cmt )
suy ra tam giác NDA = MBA (c.g.c)suy ra góc NAD = góc MAB
Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )
Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ
suy ra 3 điểm M,A,N thẳng hàng (2)
Từ (1) và (2 ) suy ra A là trung điểm của MN
( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)
Bài 3:
Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đo: ΔHMB=ΔKMC
Suy ra: BH=CK
A C B M E
Giải
Xét tam giác AMB và tam giác EMC, có
AM = ME (Gt)
Góc AMB = Góc EMC (đối đỉnh)
MB = MC (do AM là trung tuyến)
Do đó tam giác AMB = tam giác EMC (c-g-c)
Suy ra AB = CE
Ta có góc ABM = góc ECM (hai góc tương ứng) mà chúng đang ở vị trí so le trong nên AB//CE
A B C E M 2 1
a, Xét \(\Delta AMB\)và \(\Delta EMC\)có :
\(MB=MC\)( M là trung điểm BC )
\(\widehat{M_1}=\widehat{M}_2\)( 2 góc đối đỉnh )
\(AM=ME\left(GT\right)\)
\(\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\)
\(\Rightarrow AB=EC\)( 2 cạnh tương ứng )
b, Xét \(\Delta ACE\)có :
\(AC-CE< AE< AC+BC\)( BĐT trong tam giác )
Mà \(AB=CE\left(cmt\right)\)
\(\Rightarrow AC-AB< AE< AC+AB\)
\(\Leftrightarrow\frac{AC-AB}{2}< \frac{AE}{2}< \frac{AC+AB}{2}\)