K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020

a, Xét △ABI và △ACI có : AB = AC (gt) BI = CI (do I là trung điểm BC) AI chung => △ABI = △ACI (c-c-c) b, Xét △AIC và △DIB có : AI = DI (gt) \widehat{AIC}=\widehat{DIB} AIC = DIB (đối đỉnh) IC = IB => △AIC = △DIB (c-g-c) => \widehat{DBI}=\widehat{ICA} DBI = ICA (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AC // BD c, Xét △IKB và △IHC có : \widehat{IKB}=\widehat{IHC}=90^O IKB = IHC =90 O IB = IC \widehat{KIB}=\widehat{CIH} KIB = CIH (đối đỉnh) => △IKB = △IHC (ch-gn) => IK = IH

TC
Thầy Cao Đô
Giáo viên VIP
28 tháng 12 2022

loading...

a) Xét hai tam giác $AMB$ và $AMC$ có:

$AM$ là cạnh chung;

$AB = AC$ (gt);

$BM = MC$ ($M$ là trung điểm $BC$);

Suy ra $\Delta AMB=\Delta AMC$ (c.c.c)

b) $\Delta AMB=\Delta AMC$ suy ra

$\widehat{BAM} = \widehat{CAM}$ (hai góc tương ứng)

Suy ra $AM$ là tia phân giác của góc $BAC$.

c) Xét hai tam giác $AMD$ và $DMC$ có:

$AM = AD$ (gt);

$\widehat{AMB} = \widehat{CMD}$ (hai góc đối đỉnh);

$BM = MC$.

Nên $\Delta AMD=\Delta DMC$ (c.g.c)

Suy ra $\widehat{BAM} = \widehat{CDM}$ (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên $AB$ // $CD$.

9 tháng 3 2022

a) Xét tam giác AMB và tam giác DMC:

AM = DM (gt).

BM = CM (M là trung điểm của cạnh BC).

\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).

\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Xét tam giác ABD và tam giác DCA:

AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)

AD chung.

\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)

\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)

Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)

Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)

\(\Rightarrow AB+AC>2AM.\)

a,

Xét △ABC có:

BC2 = 172 = 289

AB2 + AC2 = 152 + 82 = 225 + 64 = 289

=> BC2 = AB2 + AC2

=> △ABC vuông 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

XétΔCAD có

CM là đường cao

CM là đường trung tuyến

Do đó: ΔCAD cân tại C

Ta có: ΔCAD cân tại C

mà CM là đường cao

nên CM là phân giác của góc ACD

=>CB là phân giác của góc ACD

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

25 tháng 12 2021

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC