Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ΔADB, ta có:
∠B +∠(A1 ) +∠(D1) =180o (tổng 3 góc trong tam giác)
Suy ra: ∠(D1 ) =180o-(∠B +(A1)) (1)
Trong ΔADC, ta có:
∠C +∠(A2) +∠(D2) =180o (tổng 3 góc trong tam giác)
Suy ra: ∠(D2) =180o-(∠C +∠(A2) ) (2)
+) Lại có: ∠B =∠C (gỉa thiết)
∠(A1 ) =∠(A2) (vì AD là tia phân giác của góc BAC) (3)
Từ (1), (2) và (3) suy ra: ∠(D1) =∠(D2)
Xét ΔABD và ΔACD, ta có:
∠(A1 ) =∠(A2) ( Vì AD là tia phân giác của góc BAC)
AD cạnh chung
∠(D1 ) =∠(D2) ( chứng minh trên).
Vậy: ΔABD= ΔACD (g.c.g)
Vậy: AB = AC (hai cạnh tương ứng)
DB = DC (hai cạnh tương ứng)
cái này dẽ mà chỉ càn chứng minh 2 tam giác có chứa 2 cạnh đó bằng nhau là được
Xét tam giác ABD và tam giác ACD ta có:
Góc BAD = góc CAD (t/chất tia phân giác)
AD cạnh chung
Góc B = góc C (gt)
=> Tam giác ABD = tam giác ACD (g.c.g)
=> BD = DC (2 cạnh tương ứng)
AB = AC (2 cạnh tương ứng)
Mấy bài này cũng dễ mà, tự động não k đc à?
b: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
c: Ta có: ΔBDC cân tại B
mà BF là đường phân giác
nên F là trung điểm của CD và BF\(\perp\)CD
Nguoi do co so qua cam la:
((10+1).2+1).2+1.2)=94(qua)
Nguoi do ban dc so cam la:
94-10=84(qua)
D/s:84 qua
Ai h mk mk se h lai
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC
a) Xét ΔADB vuông tại A và ΔEDB vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔADB=ΔEDB(cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
b) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
c. Vì ΔABD = ΔAED ⇒ BD = DE (hai cạnh tương ứng)(0.5 điểm)
Vì ∠(xBC) là góc ngoài của tam giác ABC nên ∠(xBC) > ∠C (0.5 điểm)
Mà ∠(xBC) = ∠(DEC) ̂⇒ ∠(DEC) > ∠C (0.5 điểm)
Trong tam giác ΔDEC có ∠(DEC) > ∠C ⇒ DC > DE mà DE = BD (0.5 điểm)
Suy ra DC > BD (0.5 điểm)