K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

=>ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>góc AIB=góc AIC=180/2=90 độ

=>AI vuông góc BC

IB=IC=BC/2=3cm

AI=căn 5^2-3^2=4cm

c: góc MIN=360-90-90-120=60 độ

Xét ΔAMI vuông tại M và ΔANI vuông tại N có

AI chung

góc MAI=góc NAI

=>ΔAMI=ΔANI

=>IM=IN

=>ΔIMN cân tại I

mà góc MIN=60 độ

nên ΔIMN đều

a: Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC
Do đó: ΔAIB=ΔAIC

b: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

Ta có: I là trung điểm của BC

nên IB=IC=3cm

=>AI=4cm

5: 

a: Xét ΔANB và ΔAMC có

AN=AM

góc BAN chung

AB=AC

=>ΔANB=ΔAMC

b: Xét ΔABC có AN/AC=AM/AB

nên MN//BC

c: góc ABN+góc IBC=góc ABC

góc ACM+góc ICB=góc ACB

mà góc ABN=góc ACM và góc ABC=góc ACB

nên góc IBC=góc ICB

=>IB=IC

mà AB=AC

nên AI là trung trực của BC

=>A,I,D thẳng hàng

2 tháng 3 2022

a) Xét Δ AIB và Δ AIC có : 

AI chung                                } =>Δ AIB = Δ AIC 

AB = AC (gt)                          } (c.c.c)

IB = IC (I là trung điểm BC) } 

=> ∠AIB = ∠AIC 92 góc tương ứng)  } => ∠AIB = ∠AIC = 90° 

Mà : ∠AIB + ∠AIC = 180°                     } => AI ⊥ BC 

Vì I là trung điểm BC nên :

=> IB = IC = BC2BC2 = 6262 = 3 cm

ΔAIB vuông tại I , theo định lí Py-ta-go:

=> AI² = AB² - IB² = 5² - 3² = 25 - 9 = 16 => AI = 4 cm

b) Xét Δ vuông INA và Δ vuông IMA có : 

AI chung                                          } => Δ vuông INA = Δ vuông IMA 

∠MAI = ∠NAI (2 góc tương ứng) }  (c.h-g.n)

                                                           => IM = IN (2canhj tương ứng)

Nếu ∠MAN = 120° , mà IM = IN => Δ IMN là Δ cân

đó

2 tháng 3 2022

Ai vẽ hình giúp tớ với TOT

 

a: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

Vì I là trung điểm của BC nên IB=IC=BC/2=3cm

=>AI=4cm

b: Xét tứ giác AMIN có \(\widehat{AMI}+\widehat{ANI}+\widehat{MAN}+\widehat{MIN}=360^0\)

nên \(\widehat{MIN}=60^0\)(2)

Xét ΔAMI vuông tại M và ΔANI vuông tại N có

AI chug

\(\widehat{MAI}=\widehat{NAI}\)

Do đó: ΔAMI=ΔANI

Suy ra: IM=IN

=>ΔIMN cân tại I(1)

Từ (1) và (2) suy raΔIMN đều

19 tháng 5 2022

a,

Ta có :

Δ ABC vuông tại A

Mà AI là đường trung tuyến của BC

=> AI = BI = IC

Xét Δ AIB, có :

AI = BI (cmt)

=> Δ AIB cân tại A

Xét Δ AIC, có :

AI = AC (cmt)

=> Δ AIC cân tại I

1 tháng 12 2023

Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:

a) Chứng minh tam giác AIB = tam giác AIC:

Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.

b) Chứng minh AI là tia phân giác của góc BAC:

Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.

c) Chứng minh IA là tia phân giác của góc HIK:

Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAIH=ΔAIK

=>\(\widehat{HIA}=\widehat{KIA}\)

=>IA là phân giác của \(\widehat{HIK}\)

5 tháng 5 2022
 

Trong tam giác ABC có:

∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o

Mà BI và CI lâ các tia phân giác nên

∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )

Suy ra ∠(IBC) + ∠(ICB) = 50o

Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=6cm

=>AH=8cm

c: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHE cân tại A

hay AE=AH

d: Xét ΔADH có

AI là đường cao

AI là đườngtrung tuyến

Do đó:ΔADH cân tại A

=>AD=AH=AE

=>ΔADE cân tại A

29 tháng 1 2017

a. Xét tam giác AIB và AIC, có

IB= IC ( I là trung điểm BC )

AI chung , AIB = AIC ( A là trung trục của BC )

suy ra 2 tam giac tren bang nhau

b. Cm