K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

Gọi (O;R) là đt ngoại tiếp tam giác ABC

Gọi D là gđ của AO và đt (O)

Kẻ đường cao AH => AH vừa là đường cao, đồng thời là đường trung tuyến

ÁP dụng định lí pytago vào tam giác AHB vuông tại H có:\(AH=\sqrt{AB^2-BH^2}=\sqrt{\left(4a\right)^2-\dfrac{BC^2}{4}}\)\(=\sqrt{16a^2-a^2}=a\sqrt{15}\)

Chứng minh được: \(\Delta AHB\sim ACD\left(g.g\right)\)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{AD}\) \(\Leftrightarrow AD=\dfrac{AB.AC}{AH}=\dfrac{4a.4a}{a\sqrt{15}}=\dfrac{16a\sqrt{15}}{15}\)

\(\Rightarrow R=\dfrac{AD}{2}=\dfrac{8a\sqrt{15}}{15}\)

 

4 tháng 3 2018

Chọn đáp án B.

Ta có: A B 2   +   A C 2   =   B C 2  ( = 100)

Suy ra tam giác ABC vuông tại A.

Do đó, tâm đường tròn ngoại tiếp tam giác ABC là trung điểm cạnh huyền BC.

Đường kính đường tròn là : d = BC = 10cm

Suy ra, bán kính đường tròn ngoại tiếp tam giác ABC là R = d/2 = 5cm

24 tháng 5 2016

A B C I

trong tgiac vuông tâm đường tròn ngoại tiếp chính là trung điểm cạnh huyền

Áp dụng định lý pytago vào tgiac vuông ABC ta có :

\(BC^2\)=\(AC^2\)+\(AB^2\)

\(BC^2\)=\(8^2\)+\(6^2\)

\(BC^2\)=100

BC=10 

Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:

10:2=5cm

31 tháng 7 2016

bán kính đường tròn nội tiếp = 1 ok ;)

 

24 tháng 5 2016

Gọi bk ngoại tiếp là R còn nôi tiếp là r ;p là 1/2 chu vi (= a+b+c/2)

ra có R=BC/2=5

mà S=pr=(6+8+10)/2r=6*8/2=>r=2

6 tháng 10 2019

Đáp án là C

Tam giác ABC có:

A B 2 + A C 2 = 12 2 + 16 2 = 400 = B C 2

⇒ ΔABC vuông tại A

⇒ Tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của BC

⇒ Bán kính = 10 cm

3 tháng 3 2019

Đáp án là B

Xét tam giác ABC có:

A B 2 + A C 2 = 7 2 + 24 2 = 625 = B C 2

⇒ ΔABC vuông tại A

⇒ Tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC

⇒ Bán kính đường tròn ngoại tiếp là 12,5 cm