K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

a) \(\hept{\begin{cases}\widehat{K}=\widehat{BAD}\\\widehat{AEK}=\widehat{DAE}\end{cases}}\)Mà \(\widehat{BAD}=\widehat{DAE}\)(AD là tia phân giác) => \(\widehat{K}=\widehat{AEK}\Rightarrow\Delta AEK\)cân tại A => AE=AK (đpcm)

b) Vì MK // AD nên \(\frac{AK}{BK}=\frac{DM}{BM}\Rightarrow\frac{AK}{DM}=\frac{BK}{BM}\left(1\right)\)

Vì AD // EM nên \(\frac{CE}{AE}=\frac{CM}{DM}\Rightarrow\frac{CE}{CM}=\frac{AE}{DM}\left(2\right)\)

Vì AK=AE (cmt câu a) nên \(\frac{AK}{DM}=\frac{AE}{DM}\left(3\right)\)

Từ (1)(2) và (3) => \(\frac{BK}{BM}=\frac{CE}{CM}\)

Mà BM=CM (M là trung điểm BC) => BK=CE (đpcm)

1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC    2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF 3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao...
Đọc tiếp

1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC    

2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF 

3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao điểm EI và BC. CMR: MK//EF

4) Cho tam giác ABC, AB=10, AC=15, 1 đường thẳng đi qua điểm M thuộc cạnh AB và song song với BC cắt AC ở N sao cho AN=BM. Tính độ dài AM sao cho AM=BN

5) Cho tam giác ABC có AB<AC, đường phân giác AD, lấy I thuộc BC sao cho BI=2 IC. Qua I kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. CM BK= 2 CE   

0
22 tháng 11 2019

k đúng cho tôi đi

22 tháng 11 2019

( Bạn tự vẽ hình nha )

a) Xét tứ giác AEDF có :

DE // AB

DF // AC

=> AEDF là hình bình hành ( dấu hiệu nhận biết )

Xét hình bình hành AEDF có : 

AD là phân giác của góc BAC

=> EFGD là hình thoi ( dấu hiệu nhận biết )

b) XÉt tứ giác EFGD có :

FG // ED ( AF //ED )

FG = ED ( AF = ED )

=> EFGD là hình bình hành ( dấu hiệu nhận biết )

c) Nối G với I 

+) XÉt tứ giác AIGD có :

F là trung điểm của AG

F là trung điểm của ID

=> AIGD là hình bình hành ( dấu hiệu nhận biết ) 

=> GD // IA hay GD // AK ( tính chất  )

+) Xét tứ giác AKDG có :

GD // AK 

AG // Dk ( AF // ED ) 

=> AKDG là hình bình hành ( dấu hiệu )

+) xtes hinhnf bình hành AKDG có :

AD và GK là 2 đường chéo 

=> AD và GK cắt nhau tại trung điểm mỗi đường 

Mà O là trung điểm của AD ( vì AFDE là hình thoi )

=> O là trung điểm của GK

=> ĐPCM

23 tháng 3 2020

a/Ta có AB//CI nên \(\frac{AB}{CI}=\frac{BD}{CD}\)(1)

Lại có AD là ph/giác nên \(\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{AB}{CI}=\frac{AB}{AC}\Rightarrow AC=CI\)

Mà AKI là tgiac vuông (2 phân giác trong và ngoài \(AE\perp AD\))

Suy ra AC là đ/ trung tuyến suy ra CK=CI

b/Tương tự

23 tháng 3 2020

a) Do AB//CI nên

\(\frac{AB}{CI}=\frac{BD}{CD}\)(1)

Do AB//CK nên

\(\frac{AB}{CK}=\frac{EB}{EC}\)(2)

AD là phân giác trong của tam giác ABC nên

\(\frac{BD}{CD}=\frac{AB}{AC}\)(3)

AD là phân giác ngoài của tam giác ABC nên

\(\frac{EB}{EC}=\frac{AB}{AC}\)(4)

Từ (1),(2),(3),(4) ta có \(\frac{AB}{CI}=\frac{AB}{CK}\)suy ra CI=CK nên C là tđ IK

b) chứng minh tương tự

Hình vẽ:

Tính chất đường phân giác của tam giác

A B C D E K 1 2 1 2

Ta có  : \(\widehat{A_1}=\widehat{A_2}\)( do \(AD\)là phân giác )

            \(\widehat{K_1}=\widehat{K_2}\)( đối đỉnh )

Vì \(AD//KM\Rightarrow\widehat{A_2}=\widehat{K_1}\left(soletrong\right)\Rightarrow\widehat{A_1}=\widehat{K_1}\)

Mà \(\widehat{AEK}=\widehat{A_1}\)( cùng bù \(\widehat{DAE}\))

\(\Rightarrow\widehat{AEK}=\widehat{K_1}\Rightarrow\Delta AEK\)cân tại \(K\)

\(\Rightarrow AE=AK\)