Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM: Do BE là tia p/giác của góc B => \(\widehat{B_1}=\widehat{B_2}=\widehat{\frac{B}{2}}\)
Do CD là tia p/giác của góc C => \(\widehat{C_1}=\widehat{C_2}=\widehat{\frac{C}{2}}\)
Mà \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> \(\widehat{C_1}=\widehat{B_1}\)
Xét t/giác ACD và t/giác ABE
có: \(\widehat{A}\) : chung
AC = AB (gt)
\(\widehat{C_1}=\widehat{B_1}\)
=> t/giác ACD = t/giác ABE(g.c.g)
=> AD = AE (2 cạnh t/ứng)
=> t/giác ADE cân tại A
=> \(\widehat{D_1}=\widehat{E_1}=\frac{180^0-\widehat{A}}{2}\) (1)
Ta có: t/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (Đpcm)
a) BD và CE theo thứ tự là phân giác của góc B và góc C (gt) nên \(\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{B},\widehat{C_1}=\widehat{C_2}=\frac{1}{2}\widehat{C}\)
mà \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của \(\Delta\)cân ABC)
do đó \(\widehat{B_1}=\widehat{C_2}\)
\(\widehat{A}\)chung
=> \(\Delta\)ABD = \(\Delta\)ACE(g.c.g)
=> AD = AE(hai cạnh tương ứng)
=> \(\Delta\)ADE cân ở A
b) \(\Delta\)AED cân tại đỉnh A nên \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\left(1\right)\)
\(\Delta\)ABC cân tại đỉnh A nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\)
Vậy DE // BC(hai góc so le trong) mà \(\widehat{B_1}=\widehat{B_2}\), do đó \(\widehat{A}=60^0\), \(\widehat{D_1}=\widehat{B_2}\)=> \(\Delta\)BED cân ở đỉnh E,do đó BE = ED(3)
c) \(\Delta\)AEC cân tại đỉnh A nên \(\widehat{AEC}=\widehat{ACE}=\frac{180^0-\widehat{A}}{2}\)
\(\Delta\)ABD cân tại đỉnh A nên \(\widehat{ABD}=\widehat{ADB}=\frac{180^0-\widehat{A}}{2}\)
=> \(\widehat{AEC}=\widehat{ABD}\)
=> CE // BD(hai góc so le trong)
Mà \(\widehat{C_1}=\widehat{C_2}\),do đó \(\widehat{A}=60^0,\widehat{D_1}=\widehat{C_2}\)
=> \(\Delta\)CED cân ở đỉnh D nên ED = DC(4)
Từ (3) và (4) => BE = ED = DC
a) Xét \(\Delta EBC\)và \(\Delta DCB\)có:
C = B, CB chung, EBC = DCB \(\Rightarrow\) \(\Delta EBC\)= \(\Delta DCB\)\(\Rightarrow\)EC = DB
\(\Rightarrow\)AE = AD \(\Rightarrow\)\(\Delta AED\)cân.
b) Ta có:
C = \(\frac{180^o-A}{2}\), E = \(\frac{180^o-A}{2}\)\(\Rightarrow\)C = E \(\Rightarrow\)DE // BC ( đồng vị )
c) Vì \(\Delta EBC\)= \(\Delta DCB\)\(\Rightarrow\)BE = DC
a) BD là phân giác ^B (gt) => ^ABD = ^DBC = \(\dfrac{1}{2}\) ^B
CE là phân giác ^C (gt) => ^ACE = ^ECB = \(\dfrac{1}{2}\) ^C
Lại có: ^B = ^C (tam giác ABC cân tại A)
=> ^ABD = ^DBC = ^ACE = ^ECB
Xét tam giác ABD và tam giác ACE:
^A chung
AB = AC (tam giác ABC cân tại A)
^ABD = ^ACE (cmt)
=> Tam giác ABD = Tam giác ACE (g - c - g)
=> AD = AE (2 cạnh tương ứng)
b) Xét tam giác ADE có: AD = AE (tam giác ABD = tam giác ACE)
=> Tam giác ADE cân tại A
=> ^ADE = ^AED = \(\dfrac{180^o-gócA}{2}\) (1)
Tam giác ABC cân tại A (gt) => ^B = ^C = \(\dfrac{180^o-gócA}{2}\) (2)
Từ (1) và (2) => ^ADE = ^AED = ^B = ^C
Ta có: ^ADE = ^C (cmt)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dhnb)
c) Xét tam giác OBC có: ^DBC = ^ECB (cmt)
=> Tam giác OBC cân tại O
d) Xét tam giác EBC và tam giác DCB có:
^B = ^C (tam giác ABC cân tại A)
BC chung
^ECB = ^DBC (cmt)
=> Tam giác EBC = Tam giác DCB (g - c - g)
=> EC = DB (2 cạnh tương ứng)
Ta có: EC = EO + OC
DB = DO + OB
Mà EC = DB (cmt); OC = OB (Tam giác OBC cân)
=> EO = DO
=> Tam giác OED cân tại O
*tự vẽ hình
A )Vì
BD là phân giác góc ABC và CE là phân giác góc ACB nên góc ABD=góc ACE
Tam giác ADB và Tam giác AEC có
AB=AC(gt)
Góc A chung
góc ABD=góc ACE
suy ra Tam giác ADB =Tam giác AEC(cgc) nên AD=AE
B
Vẽ hình :
Ta có : \(\Delta ABC\) có \(AB=AC\)\(\Rightarrow\)\(\Delta ABC\) là tam giác cân ( cân tại A )
Vì \(\Delta ABC\) là tam giác cân nên \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABE\)và \(\Delta ACD\) có :
\(AB=AC\left(GT\right)\)
\(\widehat{BAC}\) là góc chung
\(\widehat{ABE}=\widehat{ACD}\) ( vì \(\widehat{ABC}=\widehat{ACB}\) và \(BE\)\(,\)\(CD\) lần lược là các tia phân giác của \(\widehat{B}\)\(,\)\(\widehat{C}\) )
Do đó :
\(\Delta ABE=\Delta ACD\left(g-c-g\right)\)
Suy ra \(AE=AD\) ( hai cạnh tương ứng )
Do \(AE=AD\) nên \(\Delta AED\)là tam giác cân và cân tại A
a, Xét tam giác ABE và ACD có :
Góc BAC chung
AB=AC (gt)
góc ABE=ACD ( vì góc ABC=ACB và BE, CD là hai tia phân giác )
=> tam giác ABE=ACD (g.c.g)
=> AD=AE hay tam giác AED cân ở A