Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
a: Xét ΔAMB và ΔAMC có
AM chung
\(\widehat{BAM}=\widehat{CAM}\)
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>ME=MF
=>ΔMEF cân tại M
c: ta có: ΔAEM=ΔAFM
=>AE=AF
=>A nằm trên đường trung trực của EF(1)
ta có: ME=MF
=>M nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra AM là đường trung trực của EF
=>AM\(\perp\)EF
d: Kẻ FH\(\perp\)BC
Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEIB vuông tại I và ΔFHC vuông tại H có
EB=FC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔEIB=ΔFHC
=>EI=FH và BI=CH
Ta có: BI+IM=BM
CH+HM=CM
mà BI=CH và BM=CM
nên IM=HM
=>M là trung điểm của IH
Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM\(\perp\)BC
=>AM//KI//FH
Xét hình thang FHIK có
M là trung điểm của HI
MA//KI//FH
Do đó: A là trung điểm của KF
Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc
a: \(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)
b: Xét ΔCAM vuông tại A và ΔCHM vuông tại H có
CM chung
\(\widehat{ACM}=\widehat{HCM}\)
Do đó: ΔCAM=ΔCHM
c: ta có: MA=MH
mà MH<MB
nên MA<MB
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
c: Ta có: ΔAHM=ΔAKM
nên MH=MK
Ta có: AH=AK
nên A nằm trên đường trung trực của HK(1)
Ta có: MH=MK
nên M nằm trên đường trung trực của HK(2)
Từ (1) và (2) suy ra AM là đường trung trực của HK
hay AM\(\perp\)MK
hình thì bạn tự vẽ nha !
a) xét ΔAMB và ΔAMC, ta có :
AB = AC (gt)
MB = MC (vì M là trung điểm của cạnh BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
⇒ AM vuông góc với BC
c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
xét ΔAHM và ΔAKM, ta có :
AM là cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (cmt)
⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)
⇒ HA = KA (2 cạnh tương ứng)
HB không thể nào bằng AC được nha, có thể đề sai
d) vì HA = KA nên ⇒ ΔHAK là tam giác cân
trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\) (1)
trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\) (2)
từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC
Chứng minh:
a) Xét hai ∆AMB và ∆AMC có:
AB = AC (GT)
MB = MB (M là trung điểm của BC)
AM là cạnh chung
Vậy ∆AMB = ∆AMC(c.c.c)
b) Có ∆AMB = ∆AMC(theo a)
⇒ Góc AMB = Góc AMC(2 góc tương ứng)
mà góc AMB + AMC = 180° (2 góc kề bù)
⇒ Góc AMB = Góc AMC = 90°
⇒ AM ∟ BC
c) ΔABC có:
AB = AC(GT)
⇒ ΔABC cân tại A
⇒ Góc B = Góc C
Có MH∟AB tại H ⇒ Góc MHB = 90°
Có MK∟AC tại K ⇒ Góc MKC = 90°
Xét hai ΔBHM và ΔCKM có:
Góc B = Góc C(ΔABC cân tại A)
MB = MC(M là trung điểm của BC)
Góc MHB = Góc MKC = 90°
Vậy ΔBHM = ΔCKM(g.c.g)
⇒ HB = KC(2 cạnh tương ứng)
Có HB + HA = AB
⇒ HA = AB - HB
Có KC + KA = AC
⇒ KA = AC - KC
mà AB = AC(GT)
HB = KC(2 cạnh tương ứng)
⇒ HA = KA (2 cạnh tương ứng)
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM là đường cao