Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
DC=EB
CB chung
Do đó:ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=CE
\(\widehat{OBD}=\widehat{OCE}\)
Do đó: ΔODB=ΔOEC
c: Ta có: ΔODB=ΔOEC
nên OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AO là đường phân giác
nên AO là đường cao
a: Xét ΔABE và ΔACD có
AB=AC
\(\stackrel\frown{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
A B C D E O
a) Xét tam giác ADC và tam giác AEB có:
AC = AB (GT)
Góc A chung
AD = AE (GT)
=> Tam giác ADC bằng tam giác AEB ( c - g - c )
=> DC = EB ( hai cạnh tương ứng )
b) Ta có
AB = AC ( GT )
AD = AE ( GT )
=> AB - AD = AC - AE
=> BD = CE
Từ tam giác BDO = tam giác CEO
=> Góc ABE = góc ACD ( hai góc tương ứng )
=> Góc ADC = góc AEB ( hai góc tương ứng )
Ta có
Góc ADC + góc CDB = 180 độ ( kề bù )
Góc AEB + góc BEC = 180 độ ( kề bù )
=> Góc ADC + góc CDB = Góc AEB + góc BEC = 180 độ
=> Góc CDB = góc BEC
Xét tam giác BDO và tam giác CEO có
Góc ABE = góc ADC ( CMT)
BD = CE ( CMT )
Góc CDB = góc BEC ( CMT )
=> Tam giác BDO = tam giác CEO ( g - c - g )
c) Từ tam giác BDO = tam giác CEO
=> BO = CO ( hai cạnh tương ứng )
Xét tam giác AOB và tam giác AOC có
AB = AC ( GT )
BO = CO ( CMT )
AO chung
=> Tam giác AOB = tam giác AOC ( c - c - c )
=> Góc BAO = CAO ( hai góc tương ứng )
=> AO là phân giác của góc A
Ta có:
Tam giác ABC có AB = AC (GT)
=> Tam giác ABC là tam giác cân
Mà có AO là phân giác của góc A
=> AO cũng là đường cao của tam giác ABC
=> AO vuông góc với BC
A B C D E O H
Cm: a) Xét t/giác ABE và t/giác ACD
có: AB = AC (gt)
\(\widehat{A}\) :chung
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (2 cạnh t/ứng)
b)Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE (gt) ; AB = AC (gt)
=> BD = EC
Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)
\(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)
mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)
=> \(\widehat{BDC}=\widehat{BEC}\)
Xét t/giác BOD và t/giác COE
có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)
BD = EC (cmt)
\(\widehat{BDO}=\widehat{OEC}\) (cmt)
=> t/giác BOD = t/giác COE (g.c.g)
c) Xét t/giác ABO và t/giác ACO
có: AB = AC (gT)
OB = OC (vì t/giác BOD = t/giác COE)
AO : chung
=> t/giác ABO = t/giác ACO (c.c.c)
=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)
=> AO là tia p/giác của \(\widehat{A}\)
d) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
\(\widehat{BAH}=\widehat{CAH}\)(cmt)
AH : chung
=> t/giác ABH = t/giác ACH (c.g.c)
=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)
Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)
=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)
Bài 1:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 2:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔBDC và ΔCEB có
BD=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
DO đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=CE
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE
a) ta có : AB=AC
Suy ra tam giac ABC cân
Xét tam giac ABE và tam giác ADE ta có
AB=AC(gt)
góc B=gócC(tính chất tam giác cân)
AD=AE(gt)
Suy ra tam giác ABE=tam giac ACD( c.g.c)
Suy ra BE=CD( hai cạnh tương ứng )
b) Ta có O nằm trên cạnh DC và BE
Suy ra DO=EO( DC=BE)
XÉT tam giác ADO và tam giác AEO ta có
AD=AE(gt)
AOchung
DO=EO( chứng minh trên)
Suy ra tam giác AOD = tam giác AEO(c.c.c)
Suy ra góc A1=A2 ( 2 góc tương ứng)
Suy ra AOlà tia phân giác của góc A