Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Hình : Tự vẽ
a) Ta có : AM = MD (gt)
HM = MC (gt)
Nên : ACDH là hình bình hành
=> AH = CD (đpcm)
b) Cho HD cắt AB tại E
Do : ACDH là hình bình hành (cmt)
Nên : AC // HD (=) AC // ED
Mà : \(\widehat{EAC}=90^o\)
=> \(\widehat{AED}=180^o-\widehat{EAC}=180^o-90^o=90^o\)
Do đó : DH \(\perp\)AB (đpcm)
c) Ta có : \(\widehat{EHA}=\widehat{CDE}\)(đồng vị)
Xét \(\Delta EAH\)và \(\Delta CHD\), ta có :
\(\widehat{AEH}=\widehat{HCD}=90^o\)
\(\widehat{EHA}=\widehat{CDH}\)(cmt)
Nên : \(\Delta EAH\)đồng dạng với \(\Delta CHD\)(g - g)
=> \(\widehat{BAH}=\widehat{DHC}\)
Bạn tham khảo ở đường link sau:
https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+(+g%C3%B3c+BAC=+90+%C4%91%E1%BB%99+)+,+AH+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC.g%E1%BB%8Di+E+v%C3%A0+F+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+l%C3%A0+c%C3%A1c+%C4%91i%E1%BB%83m+%C4%91%E1%BB%91i+x%E1%BB%A9ng+c%E1%BB%A7a+H+qua+AB;AC+.+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+EF+c%E1%BA%AFt+B;C+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+t%E1%BA%A1i+M+v%C3%A0+N+.CMR+:+a)+AE=AFB)+HA+l%C3%A0+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+MHNc)+Chung+minh+:+CM+song+song+v%E1%BB%9Bi+EH&id=455200
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
b: Ta có: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
c: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,F thẳng hàng