Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C M E D F
a) Xét Δ AMB và Δ EMC có:
BM = CM (gt)
AMB = EMC (đối đỉnh)
AM = ME (gt)
Do đó, Δ AMB = Δ EMC (c.g.c) (đpcm)
b) Vì Δ AMB = Δ EMC (câu a) => ABM = ECM (2 góc tương ứng)
Mà ABM và ECM là 2 góc so le trong nên AB // EC (đpcm)
c) Vì AB // EC (câu b) => CAB = FCE (đồng vị)
Δ AMB = Δ EMC (câu a) => AB = EC (2 cạnh tương ứng)
Xét Δ ABC và Δ CEF có:
AC = CF (gt)
BAC = ECF (cmt)
AB = EC (cmt)
Do đó, Δ ABC = Δ CEF (c.g.c) (1)
Dễ dàng => Δ AMC = Δ EMB (c.g.c)
=> ACM = EBM (2 góc tương ứng)
Mà ACM và EBM là 2 góc so le trong nên AC // BE
Xét Δ ABC và Δ ECB có:
ABC = BCE (vì AB // EC, ABC và BCE là 2 góc so le trong)
BC là cạnh chung
ACB = EBC (vì AC // BE; ACB và EBC là 2 góc so le trong)
Do đó, Δ ABC = Δ ECB (g.c.g) (2)
Từ (1) và (2) => Δ CEF = Δ ECB hay Δ FEC = Δ BCE (đpcm)
d) Vì Δ ABC = ECB (câu c) nên AC = BE (2 cạnh tương ứng)
Xét Δ ABC và Δ BDE có:
AB = BD (gt)
BAC = DBE (vì AC // BE, BAC và DBE là 2 góc đồng vị)
AC = BE (cmt)
Do đó, Δ ABC = Δ BDE (c.g.c)
Mà Δ ABC = Δ ECB (câu b) nên Δ BDE = Δ ECB
=> BED = EBC (2 góc tương ứng)
Mà BED và EBC là 2 góc so le trong nên BC // DE (*)
Vì Δ ECB = Δ CEF (câu c) nên BCE = FEC (2 góc tương ứng)
Mà BCE và FEC là 2 góc so le trong nên BC // EF (**)
TỪ (*) và (**) => DE trùng với EF hay 3 điểm D, E, F thẳng hàng (đpcm)
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Suy ra: BK=DK
Xét ΔBKF và ΔDKC có
KB=KD
\(\widehat{KBF}=\widehat{KDC}\)
BF=DC
Do đó: ΔBKF=ΔDKC
Suy ra: \(\widehat{BKF}=\widehat{DKC}\)
=>\(\widehat{BKF}+\widehat{BKD}=180^0\)
=>F,D,K thẳng hàng