Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Ta có \(\Delta ABC\)cân tại A ( AB = AC ) \(\Rightarrow\)\(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABD\)và \(\Delta ACD\)có :
AB = AC ( gt )
BD = CD ( gt )
\(\widehat{B}=\widehat{C}\)( CMT )
Suy ra \(\Delta ABD\)= \(\Delta ACD\)
a: Xét ΔABD vuông tại D và ΔACD vuông tại C có
AB=AC
AD chung
Do đó: ΔABD=ΔACD
=>DB=DC
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)
Do đó: ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)
a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :
\(BD=DC\)
\(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)
AB= AC
=> \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)
b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao
=> \(AD\perp BC\)
*Nếu chx học cách trên thì bạn xem cách dưới đây"
Vì \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)
=> \(AD\perp BC\)
c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :
\(\widehat{EBD}=\widehat{FCD}\)
\(BD=CD\)
=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)
d) Vì D là trung điểm của BC nên \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)
Xét \(\Delta ADC\) vuông tại D có :
\(AC^2=AD^2+DC^2\)
\(100=AD^2+36\)
\(AD^2=100-36\)
\(AD^2=64\)
AD=8 cm
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
A)xét \(\Delta ABD\)VÀ\(\Delta ACD\)CÓ
\(AB=AC\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(BD=DC\)( VÌ D LÀ TRUNG ĐIỂM CỦA BC )
\(\Rightarrow\Delta ABD=\Delta ACD\left(C-C-C\right)\)
C)TA CÓ D LÀ TRUNG ĐIỂM CỦA BC
MÀ AD VUÔNG GÓC VỚI BC TẠI D
=>AD LÀ ĐƯỜNG TRUNG TRỰC CỦA BC
tự vẽ hình giùm mình.
a) \(\Delta ABD\)và \(\Delta ACD\)có:
\(AB=AC\left(gt\right)\)
\(AD:\)cạnh chung
\(BD=DC\)( D là trùn điêm BC)
Vâỵ \(\Delta ABD=\Delta ACD\left(c-c-c\right)\)
b) \(\Delta AED\)vuông tại E và \(\Delta AFD\)vuông tại F, ta có:
\(AD:\)cạnh chung
\(< BAD=< CAD\)(\(\Delta ABD=\Delta ACD\))
Vâỵ \(\Delta AED=\Delta\text{AFD}\)(cạnh huyên - cạnh góc vuông)
\(\Rightarrow AE=AF\)(2 canh tuong ung)
c) \(< ADB=< ADC\left(\Delta ADB=\Delta ADC\right)\)
Mà \(< ADB+< ADC=180^o\left(kb\right)\)
Nên \(< ADB=< ADC=\frac{180}{2}=90^o\)
Nên AD vuông góc BC
Ta có:
+) AD vuông góc BC tại D (cmt)
+) BD = DC (D trung điêm BC)
Vâỵ AD là đuơng trung trưc BC
Học tôts!