K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BD=2cm nên AD=6cm

AE/AD=9/6=3/2

AD/AC=6/12=1/2

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

1,3: Xet ΔADE và ΔACB có

AD/AC=AE/AC

góc DAE=góc CAB

=>ΔADE đồng dạng vói ΔACB

=>góc ADE=góc ACB

=>DE//BC

2: DE/CB=AD/AC=3/10

5 tháng 3 2023

a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)

=> AD + 2 = 8

=> AD = 6cm

Do đó : ADAB=68=34����=68=34

AEAC=912=34����=912=34

=> ADAB=AEAC=34����=����=34

b) Xét ΔADEΔ��� và ΔABCΔ��� có :

ˆA�^ chung

ADAB=AEAC����=����

=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�) 

c) Vì IA�� là đường phân giác của ΔABCΔ��� nên

=> ABAC=IBIC=812=23����=����=812=23 

Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23

=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)

 

 

image 

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng với ΔABC

2 tháng 5 2017

Xét tam giác AED Và Tam giác ABC có  : Góc A chung và \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5},\frac{AD}{AC}=\frac{8}{20}=\frac{2}{5}\) suy ra tam giác AED đồng dạng với tam giác ABC (cgc)  suy ra \(S_{AED}:S_{ABC}=\left(\frac{AE}{AB}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)

25 tháng 4 2021

Tỉ lệ dt hai∆ =bình phương của hệ số tỉ lệ