Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Lê Kiều Trinh - Toán lớp 7 | Học trực tuyến
a: Xét ΔBAC có \(CB^2=CA^2+AB^2\)
nên ΔBAC vuông tại A
b: \(MB=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
MC=AC-AM=25cm
=>MB=MC
hay ΔMBC cân tại M
=>\(\widehat{AMB}=2\cdot\widehat{ACB}\)
B A M C 1 2
a,Ta có 402 =1600,242=576,322=1024
mà 1600 = 576+1024
hay 402=242+322
->Tam giác ABC vuông(pi-ta-go đảo)
b,Theo định lý pi-ta-go ta có
MB2=AB2+AM2
hay MB2=242+72
->MB2=576+49
->MB2 =625 -> MB=25
Vì AM +MC =AC
hay 7 +MC =32
->MC=25
tam giác AMC cân tại M vì MB=MC
->\(\widehat{C}=\widehat{CBM}\)
ta có hình vẽ sau :
A B C M 7 1 24 40
a, tam giác ABC có AB2 + AC2 = 242 + 322 =1600 ;
BC2 = 1600.
Vậy AB2 + AC2 = BC2.
=> tam giác ABC vuông góc tại A.
b, áp dụng định lý Pi-ta-go vào tam giác vuông AMB, ta có :
BM2 = AB2 + AM2 = 242 + 72 = 625 => BM = \(\sqrt{625}=25\)
Mặt khác , MC = AC - AM = 32 - 7 = 25. Vậy MB = MC
=> tam giác MBC cân tại M
do đó \(\widehat{B_1}=\widehat{C}\)
\(\widehat{AMB}=\widehat{B_1}+\widehat{C}\) ( tính chất góc ngoài của tam giác MCB ) hay
\(\widehat{AMB}=2\widehat{C}\)
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )