Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(_{S_{ABC}}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với p=\(\frac{a+b+c}{2}\)
\(\Rightarrow\)SABC=84
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)
hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
A B C 17cm 40 ? ? ?
Tam giác ABC vuông tại A:
\(tanB=\frac{AC}{AB}\Rightarrow AC=\tan B.AB=\tan40^o.17\approx14,265cm\)
\(\cos B=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\cos B}=\frac{17}{cos40^o}\approx22,192cm\)
\(\cos C=\frac{AC}{BC}=\frac{14,265}{22,192}\approx0,643\Rightarrow C\approx50^o\)
cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C
a. Ta có: AB2 + AC2 = 212 + 282 = 1225
BC2 = 352 = 1225
=> BC2 = AB2 + AC2
=> Tam giác ABC là tam giác vuông (Định lý Pytago đảo)
Diện tích tam giác ABC
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.21.28=294\left(cm^2\right)\)
b. \(sinB=\frac{AC}{BC}=\frac{28}{35}=\frac{4}{5}\)
\(sinC=\frac{AB}{BC}=\frac{21}{35}=\frac{3}{5}\)
c. Ta có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{21}{28}=\frac{3}{4}\)\(\)
=> 4BD = 3DC
<=> 4BD = 3(BC - BD)
<=> 7BD = 3BC
<=> 7BD = 3 . 35
=> BD = 15 (cm)
=> DC = 20 (cm)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=-\dfrac{13}{85}\)
nên góc A=99 độ
\(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}=\dfrac{3}{5}\)
nên góc B=37 độ
=>góc C=180-99-37=44 độ