K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

D K C B E 1 2

a)Xét tam giác BED và tam giác BEC có:

BD=BC(gt)

Góc B1= góc B(Vì BK là tia phân giác của góc B)

BE chung

=> Tam giác BED= tam giác BEC(c.g.c)

b) Xét tam giác BKS và tam giác BKC có:

BK chung 

Góc B1= góc B(Vì BK là tia phân giác của góc B)

DK=KC( vì K là trung điểm của DC)

=> Tam giác BKD= tam giác BKC(c.g.c)

=>BK vg góc với DC

hay EK vg góc với DC

c)VÌ EK vg góc với DC(cm b)

Mà BK vg góc với DC(cm b)

=> EK và BK cùng vg góc với DC

=> Ek trùng với BK

=>Ba điểm B,E,K thẳng hàng

                        

6 tháng 4 2020

Trần Phương Thảo

xem lại khúc chứng minh BKE THẲNG HÀNG

20 tháng 12 2023

loading...  loading...  loading...  

15 tháng 12 2023

a: Xét ΔBDE và ΔBCE có

BD=BC

\(\widehat{DBE}=\widehat{CBE}\)

BE chung

Do đó: ΔBDE=ΔBCE

b: Ta có: ΔBDE=ΔBCE

=>ED=EC

=>E nằm trên đường trung trực của DC(1)

Ta có: BD=BC

=>B nằm trên đường trung trực của CD(2)

Ta có: KD=KC

=>K nằm trên đường trung trực của CD(3)

Từ (1),(2),(3) suy ra B,E,K thẳng hàng

=>B,E,K cùng nằm trên đường trung trực của DC

=>EK\(\perp\)DC

c: ΔAHD vuông tại H có \(\widehat{DAH}=45^0\)

nên ΔAHD vuông cân tại H

Xét ΔBDC có BD=BC

nên ΔBCD cân tại B

mà \(\widehat{BDC}=45^0\)

nên ΔBCD vuông cân tại B

=>\(\widehat{ABC}=90^0\)

 

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

B C A D I E 1 2 H

a, Xét tam giác BED và tam giác BEC có:

BE chung

góc B1= góc B

BC=BD

=> tam giác BED = tam giác BEC (c.g.c)

Xét tam giác BDI và tam giác BCI có:

BI chung

góc B1= góc B2

BD=BC

=> tam giác BDI = tam giác BCI (c.g.c)

=> DI=CI

b,Vì BD=BC => tam giác BDC cân tại B

Mà BI là tia phân giác góc B

=> BI đồng thời là đường cao

=> BI vuông góc với DC

Mà AH vuông góc với DC

=> BI//AH

13 tháng 7 2019

A B C D E I H

Cm: a) Xét t/giác BED và t/giác BEC

có: BD = BC (gt)

\(\widehat{DBE}=\widehat{CBE}\)(gt)

  BE : chung

=> t/giác BED = t/giác BEC (c.g.c)

Ta có: BD = BC (gt) => t.giác BCD cân

Mà BI là tia p/giác góc B của t/giác BCD

=> BI đồng thời là đường  trung tuyến (t/c t/giác cân)

=> IC = ID

(phần này có thể xét 2 t/giác BID và t/giác BIC)

b) Ta có: t/giác BCD cân tại B

BI là tia p/giác của t/giác BCD

=> BI đồng thời là đường cao của t/giác (t/c của t/giác cân)

=> BI \(\perp\)DC

mà AH \(\perp\)DC

=> AH // BI (từ \(\perp\) đến //)

8 tháng 2 2021

bạn lm chx vậy gửi cho mk đc ko

 

a) Xét ΔBED và ΔBEC có 

BD=BC(gt)

\(\widehat{DBE}=\widehat{CBE}\)(BE là tia phân giác của \(\widehat{DBC}\))

BE chung

Do đó: ΔBED=ΔBEC(c-g-c)

Xét ΔBDI và ΔBCI có

BD=BC(gt)

\(\widehat{DBI}=\widehat{CBI}\)(BI là tia phân giác của \(\widehat{DBC}\))

BI chung

Do đó: ΔBDI=ΔBCI(c-g-c)

⇒ID=IC(hai cạnh tương ứng)

b) Sửa đề: Chứng minh AH//BI

Xét ΔBDC có BD=BC(gt)

nên ΔBDC cân tại B(Định nghĩa tam giác cân)

Ta có: ΔBDC cân tại B(cmt)

mà BI là đường phân giác ứng với cạnh đáy DC(gt)

nên BI là đường cao ứng với cạnh DC(Định lí tam giác cân)

⇒BI⊥DC

Ta có: AH⊥DC(gt)

BI⊥DC(cmt)

Do đó: AH//BI(Định lí 1 từ vuông góc tới song song)