K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2018

Vì AB<AC nên \(\widehat{ABC}>\widehat{ACB}\)

Xét hai tam giác ABD và ACD có : 

\(\widehat{DAB}=\widehat{DAC}\)

\(\widehat{ABC}>\widehat{ACB}\)

Mà cạnh BD đối với góc BAD và cạnh DC đối với góc DAC nên DB<DC

23 tháng 6 2020

hb bé hơn hc đúng nhé

kết bạn với mình nhé

23 tháng 6 2020

ok trang nè

28 tháng 12 2019

Violympic toán 7

\(a,Xét\Delta AHBvà\Delta AHMcó\)

\(AB=AM\left(gt\right)\)

\(\widehat{A1}=\widehat{A2}\left(AHlàtiaphângiáccủa\widehat{A}\right)\)

\(AHlàcạnhchung\)

\(\Rightarrow\Delta AHB=\Delta AHM\left(c-g-c\right)\left(đpcm\right)\)

\(b,Tacó\widehat{ABH}+\widehat{HBD}=180^0\left(k/bù\right)\)

\(Và:\widehat{AMH}+\widehat{HMC}=180^0\left(kề/bù\right)\)

\(Mà:\widehat{ABH}=\widehat{AMH}\left(\Delta ABH=\Delta AMH\right)\)

\(\Rightarrow\widehat{HBD}=\widehat{HMC}\)

\(Xét\Delta BHDvà\Delta MHCcó:\)

\(BH=MH\left(\Delta AHB=\Delta AHM\right)\)

\(\widehat{BHD}=\widehat{MHC}\left(đ/đỉnh\right)\)

\(\widehat{HBD}=\widehat{HMC}\left(cmt\right)\)

\(\Rightarrow\Delta BHD=\Delta MHC\left(g-c-c\right)\)

\(\Rightarrow HD=HC\left(2c.t.ứ\right)\)

Lại có: \(\left\{{}\begin{matrix}BC=BH+HC\\MD=MH+HD\end{matrix}\right.\)

Mà: \(\left\{{}\begin{matrix}BH=MH\left(cmt\right)\\HC=HD\left(cmt\right)\end{matrix}\right.\)

\(MD=BC\left(đpcm\right)\)

\(c,Chứngminhtươngtựtađược:AD=AC\)

\(Xét\Delta ADHvà\Delta ACHcó:\)

\(\widehat{A1}=\widehat{A2}\)

\(AD=AC\left(cmt\right)\)

\(AHlàcạnhchung\)

\(\Rightarrow\Delta ADH=\Delta ACH\left(c-g-c\right)\)

\(\Rightarrow\widehat{AHD}=\widehat{AHC}\left(2.g.t.ứ\right)\)

\(Mà:\widehat{AHD}+\widehat{AHC}=180^0\)

\(\Rightarrow\widehat{AHD}=\widehat{AHC}=\frac{180^0}{2}=90^0\)

\(\Rightarrow AH\perp CD\)

a ) Xét  ∆BAD và  ∆CAD
AB = AC (  ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=>  ∆ABH =  ∆ACH(g.c.g)

16 tháng 8 2016

bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha

Bài 1:

a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)

=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)

b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD

c) xét tam giác AEF  và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)

=> tam giác AEF  = tam giác DEC ( trường hợp g.c.g ) => AE = DC     (1)

mặt khác, AB = BD ( c/m câu b)      (2)      => tam giác ABD cân tại B => góc BDA = góc B :2     (3)

từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2     (4)

từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC

Bài 2:

a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD =  tam giác HBD => AD = DH ( cặp cạnh tương ứng)

b) do AD = DH ( c/m câu a)           (1)

xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên)    (2)

từ (1) và (2) => AD < DC

c) xét tam giác ADK  và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)

=> tam giác ADK  = tam giác HDC ( trường hợp g.c.g ) => AK = HC     (3)

mặt khác, AB = BH ( do tam giác ABD =  tam giác HBD)      (4)      

từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B 

Xong rồi nha :)

16 tháng 9 2016

chịu 

thông cảm nhé