K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

xét △ABC ta có:

AB<AC  nên:\(ABC>ACB\)(do tính chát quan hệ giữa cạnh và gogs đối diện của△

\(=>\dfrac{1}{2}ABC>\dfrac{1}{2}ACB\)

\(=>IBH>ICH\)

\(=>IB< IC\)

a:

ΔABC vuông tại A nên BC là cạnh lớn nhất

=>AC<BC

mà AB<AC

nên AB<AC<BC

Xét ΔABC có AB<AC<BC

mà \(\widehat{C};\widehat{B};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

b: Ta có: \(\widehat{ABI}=\widehat{CBI}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{ACI}=\widehat{BCI}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ACB}< \widehat{ACB}\)

nên \(\widehat{ICB}< \widehat{IBC}\)

Xét ΔIBC có \(\widehat{ICB}< \widehat{IBC}\)

mà IB,IC lần lượt là cạnh đối diện của các góc ICB và góc IBC

nên IB<IC

21 tháng 1

câu c của tôi đâu

 

26 tháng 2 2022

undefined

12 tháng 7 2018

22 tháng 2 2022

mình mới học lớp 4

11 tháng 1 2019

NO BIẾT

12 tháng 1 2019

A B C I

Theo định lí tổng ba góc của một tam giác bằng 180 độ: Xét trong tam giác ABC, ta có:

 \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}\)(1)

Vì BI là phân giác \(\widehat{ABC}\Rightarrow\widehat{IBC}=\frac{1}{2}\widehat{ABC}\)

   CI là phân giác \(\widehat{ACB}\Rightarrow\widehat{ICB}=\frac{1}{2}\widehat{ACB}\)

Xét trong tam giác ICB có: \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^o\Rightarrow\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=180^o-\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)(2)

Từ (1), (2) => \(\widehat{BIC}=180^o-\frac{1}{2}\left(180^o-\widehat{BAC}\right)=90^o+\widehat{BAC}>90^o\)

=> góc BIC là góc tù cũng là góc lớn nhất=> Cạnh BC đối diện góc BIC là cạnh lớn nhất trong tam giác BIC

b) Giả sử IB<IC => \(\widehat{ICB}< \widehat{IBC}\Rightarrow\widehat{ACB}< \widehat{ABC}\Rightarrow AB< AC\)

26 tháng 4 2020

ủa, nè nè ! đề là j vậy?

26 tháng 4 2020

Câu hỏi là j vậy bn ?

27 tháng 4 2020

Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.

Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.

27 tháng 4 2020

Bạn viết đề bài cho đầy đủ chứ -.-