Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy
a, C/m t/giác IEF cân
b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF
c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH
Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
Kẻ \(CG\perp EF\), \(BN\perp EF\)( \(G,N\in EF\))
Xét tam giác BMN vuông tại N và tam giác CMG vuông tại G có;
BM = CM( M là trung điểm của BC)
\(\widehat{BMN}=\widehat{CMG}\)(đối đỉnh)
=> \(\Delta BMN=\Delta CMG\)(cạnh huyền - góc nhọn)
=> BN = CG.
Gọi P là giao của đường phân giác góc BAC và EF.
Tam giác AEF có AP vừa là đường phân giác, vừa là đường cao => Tam giác AEF cân tại A.
=> \(\widehat{AEF}=\widehat{AFE}\)mà \(\widehat{AEF}=\widehat{BEN}\)(đối đỉnh) => \(\widehat{BEN}=\widehat{AFE}\).
=> \(90^0-\widehat{BEN}=90^0-\widehat{AFE}\)=> \(\widehat{GCF}=\widehat{NBE}\)
Xét tam giác GCF vuông tại G và tam giác NBE vuông tại N có:
BN = CG( chứng minh trên)
\(\widehat{GCF}=\widehat{NBE}\)(chứng minh trên)
=> \(\Delta GCF=\Delta NBE\)(cạnh góc vuông - góc nhọn kề) => BE = CF(đpcm)