Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng
Gọi M là trung điểm của BC
Xét hai tam giác vuông BMI và CMI có:
BM = CM (vì M là trung điểm của BC)
MI: cạnh chung
Vậy: \(\Delta BMI=\Delta CMI\left(hcgv\right)\)
Suy ra: IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông AHI và AKI có:
AI: cạnh huyền chung
\(\widehat{HAI}=\widehat{KAI}\left(gt\right)\)
Vậy: \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông IHB và IKC có:
IB = IC (cmt)
IH = IK (cmt)
Vậy: \(\Delta IHB=\Delta IKC\left(ch-cgv\right)\)
Suy ra: BH = CK (hai cạnh tương ứng).
Gọi đường trung trực của BC cắt BC tại M.
Xét ΔBMI và ΔCMI, ta có:
∠(BMI) = ∠(CMI) = 90o (gt)
BM = CM ( vì M là trung điểm của BC )
MI cạnh chung
Suy ra: ΔBMI = ΔCMI(c.g.c)
Suy ra: IB = IC ( hai cạnh tương ứng)
Xét hai tam giác vuông ΔIHA và ΔIKA, ta có:
∠(HAI) = ∠(KAI) ( vì AI là tia phân giác của góc BAC).
∠(IHA) = ∠(IKA) = 90o
AI cạnh huyền chung
Suy ra: ΔIHA = ΔIKA(cạnh huyền góc nhọn)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông ΔIHB và ΔIKC, ta có:
IB = IC ( chứng minh trên )
∠(IHB) =∠(IKC) =90o
IH = IK (chứng minh trên)
Suy ra: ΔIHB = ΔIKC(cạnh huyền.cạnh góc vuông)
Suy ra: BH = CK(hai cạnh tương ứng)
Xét ∆BMI và ∆CMI, ta có:
+) BM = CM (vì IM là đường trung trực của BC)
+) \(\widehat{BMI}=\widehat{CMI}=90^0\)
+) MI cạnh chung
Suy ra: ∆BMI = ∆CMI (c.g.c)
⇒ IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông IHA và IKA, có:
+) \(\widehat{HAI}=\widehat{KAI}\) (AI là phân giác góc A)
+) AI cạnh huyền chung
Suy ra: ∆IHA = ∆IKA (cạnh huyền - góc nhọn)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông IHB và IKC, có:
+) IB = IC (chứng minh trên)
+) IH = IK (chứng minh trên)
Suy ra: ∆IHB = ∆IKC (cạnh huyền - cạnh góc vuông)
Suy ra: BH = CK (2 cạnh tương ứng)
a, Áp dụng định lý Pytago :
ta có : \(BC^2=AC^2+AB^2\)
\(BC^2=3^2+4^2\)
\(BC^2=9+16=25=5^2\)
=>\(BC=5^{ }\)
b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn
Có : Trong tam giác ABC có BC=5, AC=4, AB=3
=> góc A > góc B > góc C
Vậy góc B > góc C
c, Xét △BIC và △AIC có
góc \(C_1=C_2\)
BAC = KHC = 90 độ
IC cạnh chung
=> △HIC = △AIC
Xét △HIB và △KIA có
IH = IA (cmt)
\(I_1=I_2\)( đối đỉnh)
Góc A = góc H = 90 độ
=> △HIB = △AIK
Vậy cạnh AK = BH
a) Xét tam giác AIH và tam giác AIK ta có:
AI là cạnh chung
\(\widehat{AHI}=\widehat{AKI}=90^o\)
\(\widehat{HAI}=\widehat{IAK}\)
\(\Rightarrow\Delta AIH=\Delta AIK\left(đpcm\right)\)
b) Xét tam giác HIB và tam giác KIC ta có:
IH = IK ( tam giác AIH = tam giác AIK )
\(\widehat{BHI}=\widehat{IKC}=90^o\)
\(IB=IC\left(=\frac{1}{2}BC\right)\)
\(\Rightarrow\Delta HIB=\Delta KIC\Rightarrow BH=CK\left(đpcm\right)\)
TK