Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D
a. Do AN và AM là hai tia phân giác nên \(AN⊥AM\). Vậy thì MN là đường kính của đường tròn O.
Theo tính chất đường kính dây cung, MN vuông góc với BC tại trung điểm BC.
b. Do tam giác AED vuông tại A, K là trung điểm DE nên \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}\)(Góc có đỉnh bên ngoài đường tròn)
Lại có MN là đường kính nên \(sđ\widebat{NB}+sđ\widebat{BM}=sđ\widebat{NC}+sđ\widebat{CM}\);
Lại do AM là phân giác nên \(\widehat{BAM}=\widehat{CAM}\Rightarrow sđ\widebat{BM}=sđ\widebat{CM}\) (Góc nội tiếp)
Vậy thì \(sđ\widebat{NB}=sđ\widebat{NC}\)
Khi đó \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{NB}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{AN}}{2}=\widehat{ABN}\) (góc nội tiếp).
Kẻ đường kính CD, đi chứng minh AD=AB. Xét tam giác ADC vuông tại A (có cạnh DC là đường kính) nên AD^2+AC^2=DC^2 hay AB^2+AC^2=DC^2 = (2a)^2=4a^2.