Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có: AB=AC(gt)
=> ΔABC cân tại A
=>^B=^C
Xét ΔAMB và ΔAMC có:
AB=AC(gt)
^B=^C(cmt)
MB=MC(gt)
=> ΔAMB =ΔAMC( c.g.c)
=> ^AMB=^AMC
Mà ^AMB+^AMC=180( cặp góc kề bù)
=> ^AMB=^AMC=90
=>AM\(\perp\) BC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét ΔAMB và ΔAMC, ta có:
AB = AC (gt)
BM = CM (vì M là trung điểm BC)
AM cạnh chung
Suy ra: ΔAMB= ΔAMC(c.c.c)
⇒ ∠(AMB) =∠(AMC) ̂(hai góc tương ứng)
Ta có: ∠(AMB) +∠(AMC) =180o (hai góc kề bù)
∠(AMB) =∠(AMC) =90o. Vậy AM ⏊ BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (giả thiết)
\(AM\) là cạnh chung
\(BM=CM\) (giả thiết)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
xét tam giác acm và tam giác abm có:
AC=AB(GT)
AM:CẠNH CHUNG
CM=MB(GT)
SUY RA TAM GIÁC ACM = ABM(C.C.C)
SUY RA GÓC M1=M2
MÀ M1=M2=180 ĐỘ(2 GÓC KỀ BÙ)
SUY RA AM VUÔNG GÓC VỚI CB